5 The overall dynamics of vacuum layers and «vacuum electrostatics»

In this chapter, the overall dynamics of vacuum layers is considered, in particular "vacuum
electrostatics". The rotation of the vacuum layers within the core of the stable vacuum formation (in
particular the inside cores of the «electrony and «positrony) is investigated. The foundations for
studying the “rakya” (boundary) separating the core of stable vacuum formation from its outer shell
are laid.

5.1 Stratification of «vacuum»

The subject of the study of Algebra of Signatures
(Alsigna) is a volume of the "vacuum", i.e. a local portion of the 3
- dimensional void (see Definitions 1.1.1, 1.12.5).

In the framework of the Algebra of Signatures, the "vacu-
um" is stratified into an infinite number of nested Amas-vacuums

(Figure 5.1.1 or 1.5.1), which are detected in the void by using

monochromatic beams of light with wavelengths Am . from differ-

Fig. 5.1.1. A, ,-vacuum is nested in

ent ranges given by A4 = 10" — 10" cm, where n = m +1 (see §§
1.1 through 1.4). Ara-vacuum, where Azg > Amn

In this a Chapter, we dwell on the geodesics of the curved portion of only one of Ams-vacuums
(i.e., one transverse 3-dimensional vacuum layer, Figure 5.1.1). The geodesics of the remaining
Amn-vacuums are described similarly.

Recall that, within the framework of the Algebra of Signatures, the simplest is the uncurved
section of the 8-dimensional 2°-Am,-vacuum region (see § 1.21), which is described by a system of two
metrics with mutually opposite signatures {see (1.7.3) and (1.7.4)}

dsO? = df —d*—dy? —d? = dxo*—dx1>—dx2’> — dx3* =0 with signature (+——-); (5.1.1)
{ ds™? = — c2df + d* + dy? + dz* = — dxo® + dxi? + dx2® + dx3* = 0 with signature (—+++), (5.1.2)
satisfying the vacuum condition

ds®2 = Va(ds 2 + dsM?) = % [(cPdf? — dx> — dy* — d2%) + (- 2dE + d*+ dy* + d2P) =

=0-c’df + 0-dx*+ 0-dy? + 0-dz* = O, (5.1.3)
where O is the true zero (see Definitions 1.4.1, 1.12.4).

The metric-dynamical state of the same, but curved section of the 23-An-vacuum region is de-

scribed by the averaged metric (§7.21 and §1.22)

ds™2 = Ya(dsO* + dso™?) = Va(giO — gijo)dxidd, (5.1.4)
where

ds?=ds" ~ 2 = g;Odxidx¥’ with signature (+——-), (5.1.5)
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is the metric tensor of the "outer" side of the 23-Am-vacuum region (or
subcont — see Definition 1.7.4);

ds2=dsC 92 = giidxidy  with signature (—+++), (5.1.7)

8w 8o &w & Vs ®
® _ g(()? gl(Jlr) gg) gg) (5.1.8)
Tl g ey gy

g e g g J5ds ©

. . . . . Fig. 5.1.2. Relationship between

is the metric tensor of the "inner" side of the 2°-An.n,-vacuum region (or . P et
the segments ds) and ds

antisubcont — see Definition 1.7.5).

It is important to note that the expression (5.1.4)
ds“2 =1, dsO* + 1 ds™? (5.1.9)
is, in fact, the Pythagorean theorem c? = @+ b* (see § 1.22 ). This means
that the line segments (%2)"?ds") and (V2)"2ds™ are always mutually per-

pendicular to each other: ds©L ds® (Figure 5.1.2), and two lines directed

in the same direction can alwa mutuall ndicular only when
e same direction ¢ ways be mutually perpendicular only whe Fig. 5.1.3 If you project the

they form a regular double helix (Figure 5.1.3). lines of a regular double helix
onto a plane, then at the point of

Thus, the average metric (5.1.9) corresponds to the segment intersection they are mutually
) o ) ) perpendicular to each other
2-"braid" (Definition 1.22.1), consisting of two interwoven spirals s© and

s, which can be described by a complex number
ds ©= )5 (dsO+ids™), (5.1.10)

the square of the module of which is equal to (5.1.4). Here i is the imaginary unit +—1, fulfilling the
function of a unit vector, giving the direction to the linear element ds™) which is perpendicular to the

direction of the linear element ds®.

5.2 The equation of the geodesic line in a two-sided 23-Ann-vacuum region
The shortest distance between two infinitely close points p1 and p2 in a curved 2°-Am »-vacuum

region, i.e. the minimal length of the 2-helix (5.1.10), is defined as the extremal of the functional
S =1ds® = Y15 [(dsO+ids™), (5.2.1)

where the limits of integration are the points p1 and p2 .
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We find the equation of this extremal, based on the condition that the first variation is equal to

Z€10.

85 = V5 8l(ds O +ids )= 0. (5.2.2)

Both parts of the expression (5.2.2) can be multiplied byx/z ; then we have
58 =6 [dsO+is ds™) = 0, (5.2.3)
or, taking into account (5.1.5) and (5.1.7)

8 =5 [g,Oaxax +i] g, Vaxaxr =0. (5.2.4)

Variations in the expression (5.2.4) can be considered separately

51 g, axvax' =0, 5[ [g avax = 0. (5.2.5)

Extremal of the functionals (5.2.5) are defined identically; therefore we consider the general case [34]

P3
S = jds, (5.2.6)

P

ds = ,/gydxidxj (5.2.7)

is the element of the 4-dimensional line with any of the 16 possible signatures (1.10.13).

where

Consider the first variation of the functional (5.2.7)
88 =5ds =5 [g,dvdx’ =0, (5.2.8)

provided that at the ends of the /ine under consideration (i.e., at the points p1 and p2), the variations are
equal to zero
ods ,,=ads, ,=06x,,=060x,,=0. (5.2.9)
We use the expression [34]

&ds® = 2ds &ds (5.2.10)

from which follows

1 S D . s
ods = Eé‘gijdx dx’ :ﬁ{ﬁx_j’&#dx dx’ + g dx’dox' + g dx'dox’ )} , (5.2.11)

where we use the commutativity of the operations of variation and differentiation, o (dx"y=d(&").

Substituting the expression (5.2.11) into the integral (5.2.8) and dividing and multiplying by ds,
we obtain [34]

P Oo . i j J i H
5= L[| By A g [ B PO gy, (5.2.12)
2 M ox" ds ds ds ds ds

We integrate the expression in parentheses by parts:
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J‘( B s] ds * Z(g”k ds B ds] "

17 d dx’ dx'
-— J‘é‘xﬂ_(gﬂig_'_giﬂ g]ds

2 (5.2.13)

Due to (5.2.9), the first term in this expression vanishes. Substituting the remainder of (5.2.13)

in (5.2.12), and differentiating, we arrive at the expression [34]

dg. Og. dg, \dx' dx’ 2
:_I{( i _ gw_ g’ﬂjdidx +2g .d—"z}dsaxﬂ=o. (5.2.14)

X' ox’ | ds ds " ds

From the fact that the integral (5.2.14) vanishes for any variation dx*, the expression, enclosed
in brackets goes to zero. Whence, taking into account the relation g, g = 4, after simple calculations

we obtain [34]

dZ / d i d J 2 1
S . v dx’ (5.2.15)
ds T ds ds ds ds ds’
where
I = 1 g™ % +ag_”’_% are the Christoffel symbols. (5.2.16)
Y ox’  ox'  ox”
Making similar calculations for the variations (5.2.5), we obtain the two equations
2.1 i J
X pro @ d g (5.2.17)
ds Y ods ds
2.1
d ~ o dr’ dv’ = o, (5.2.18)
ds " ds ds
where, respectively
©) - )
e = ! —g™ ag“f + ag"ff _ % are the Christoffel symbols of the ubcont; (5.2.19)
Y 2 ox’ ox'  ox*

1 (ag(ﬂ ag(+) agy)

o ot J are the Christoffel symbols of the antisubcont. (5.2.20)
s 2 2

When considering the variation (5.2.4), and considering the resulting Christoffel symbols
(5.2.19) and (5.2.20), we find that the desired extremal functional (5.2.1) is defined by the following

equation of the geodesic in the curved bilateral 23- A »-vacuum region
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dSZ :_(Fij ) +lFij )EX (5222)

Within the Algebra of Signatures (Alsigna), the expression (5.2.22)

determines the accelerated motion of the local bilateral portion of the

23-Ama-vacuum region, in a 2-braid. Further, it will be shown that this ex-  Fig S-21. With an ac-

. . . . ) celerated fall, the water
pression also contains information about the dynamics of the curved = = == ,
jet is twisted into a spiral
3-dimensional layer of the "vacuum", whose dimensions of irregularities are

commensurable with 100-Am.x.

5.3 Eight-sided consideration
More accurate and harmonious is not a 2-sided but an 8-sided consideration of a local portion
of a 2% Ams-vacuum region (see Chapter I). In this case, we consider not the two 4-dimensional sides
of one "sheet", (Figure 1.21.1), but rather the eight "sides" of the vacuum cube (Figure 1.6.2). There-
fore, at this level of consideration, the curved state of the 2%-Ax -vacuum region is not described by a

superposition of two 4-metrics, as in the previous paragraphs, but rather sixteen 4-metrics {see

(1.20.5)}

16
ds(zlé) = Z glg.”’)dxidxj = gly)dx’dx’ + gé.z)dx’dxf + gl?)dx’dx’ + gt.(f)dxldx’ +
q=1

+ gf dx'dx’ + g,.5.6)dx"dxj + gf/7)dxidx’ + g!.(ig)dxidxj +

(5.3.1)
+ gé.g)dxidxj + gé.lo)dxidxj + gly Velx'dx’+ g\\? dx'dx’ +
+ g,.§.13)dx"dxj + g;.14)dxidxj + glg.ls)dxidxj + gi§.16)dxidxj =0,
where
@ @ (@ (@)
o &6 &0 &
@ @ (@ (@
@ _ g1 & &1 &1l (5.3.2)
&ij @ L@ @ @
gn & &» &n»
@ @ L @
g &35 &5 &

are the components of the metric tensor of the ¢ metric space with the corresponding signature

188



E++++)): E+++—;Z ((—++—))11 E++—+;Z

signlg'? )= ———t —+++ ——++ et — 533

& ( ij ) (+__+)3 (++——)7 (+___)11 (+_++)15 ( )
A R S A G ¢

Within the framework of the Algebra of Signatures, the expression (5.3.1) describes a 16-braid,
formed in an additive manner (weave) of sixteen 4-dimensional metric spaces (see §§ 1.17 through
1.22). In this case, a segment of a 16-helix, consisting of the 16 interlaced segments ds(q), is described

by the expression {see (1.22.31)}

dsaey= mds™ ) + pads® T + p3dsC 0 + pads® P +
+nsdsC ) +edsC )+ prdsC ) + pedsC )+ (5.3.4)
+59dsC T+ o dsC )+ pudsC T )+ pads CTT ) +
i dst T s dsC T s dsY T F e dsCF ),
where nm (m =1, 2, 3, ..., 16) is an orthonormal basis of objects (similar to an imaginary unit) that sat-
1sfy the anticommutation relation of a Clifford algebra
Nmhn + Nulim = 20mn (5.3.5)
where dum is the 16x16 identity matrix.
The section of the 16-braid (5.3.4) can be written as the sum of two complex conjugate 8-braids
(octonions)
dsae)y= ds) O+ ds) ™, (5.3.6)
where
ds@ 0= Qds" T + Gds" )+ GdsC ) + Gads© T + GdsC ) +

+Cds T+ Gds T+ Gdst ) =0, (5.3.7)
ds@ V= GdsC )+ OdsC T+ GdsT T )+ GdsC T )+ GdstT D +
+ CodsC T+ Gds T + GdsC T, (5.3.8)

Here the eight objects ¢ (where r =1, 2, 3, ... 8) satisfy the anticommutative relationship of a
Clifford algebra:
cm Ck + Ck Cm = 25km . (539)

where Jdikm 1s the Kronecker symbol (dxm =0 for m # k and o =1 for m = k).
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In this case, dn is the identity 8x8-matrix:

(5.3.11)

00 00 0 00

1

0

00 00 0O

1
0
0 0 0

00 0 0 O

1

00 0 O

1

0

1

1

0 0 0 00

0

1

0 000 0O
0 000 0 0O

Consider the functional

(5.3.12)

P
S = [dsg,
P

where ds(6) 1s the segment of the 16-braid (5.3.4).
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Analogously to what was done in § 5.2, we equate the first variation of the given functional to
Zero

8 = mslds™ ) + pS[ds“ D + p3Sldst D + psldst 0 +
+ys8ldsC ) + e Sldst ) + prSldsCT) +psdldst T+ (5.3.13)
+I195Ids(’+++)+77105fds(’*") + 77115J.ds(+++*)+ ﬂlzé‘jds(erJr*)-l-

+ 38 ds® T +asTdse T + isSdst T+ pesldstT T =0,

and perform operations of the type (5.2.6) through (5.2.22), thereby obtaining the equation for the ex-

tremal (that is, the averaged geodesic) in the curved 2°-An »-vacuum region

d2

(7711“’“) + 1,007+, + 4+ D) + g, F’(lé))dx dx’ =0, (5.3.14)
ds ds
or
d 2! ,(q) dx' dx
5.3.15
(Z R ( )
where
bo) () ) (9) a (9)
rio Lol Bu |y 8y (5.3.16)
! 2 ox’  ox'  ox”
are Christoffel symbols for the g™ metric space with components of the metric tensor
g0 &9 &b &
w_| & & & &b (5.3.17)
g = (9) (9) (9) (9) -
o 8n &» 8n
gi &i g g
and the corresponding signature
(+++4) (F++-) (++-) (#+-4)°
2 10 14
I e e e M cais
sign\g;” |= 3 ; . s (5.3.18)
(+—+) (F+-—-) (F-—)" (+=++)

Expression (5.3.14) shows that at this level of consideration, the curved section of the 264, -
vacuum region represents complex "braids" and "knots", composed of 16 intertwined accelerated in-

tra-vacuum currents (Figure 5.3.1).
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Fig. 5.3.1. Fractal illustration of intertwined intra-vacuum currents

A further level of consideration deals with the a 2!%- A, »-vacuum region (see § 1.16). Its dynam-
ics are similar to the dynamics of a 2°-Am.-vacuum region, but in this case not 16 accelerated intra-
vacuum currents are intertwined, but rather 256.

There can be an infinite number of more sophisticated levels of investigation of the "vacuum"
(see § 1.16). In such a case, each time the dynamics of the subsequent cross-level "vacuum" would be
the result of averaging (desensitization) of dynamics of the previous one, a significantly subtler and

more gracefully constructed level.
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5.4 Hidden dynamics of the transverse vacuum layer
In § 1.18 it was shown that the metric of the local section of a curved 4-dimensional subspace
ds'D? = g Dex'dx, (5.4.1)
with any of the 16 possible signatures (5.3.3) may be represented as a scalar product of the two vectors

specified in the distorted affine spaces with the corresponding stignatures {see (1.18.3)}

ds'D? = ds\Ods® = prm e, (g, (@D pnbe,bloyPdxidx = g Ddxidy, (5.4.2)

where
ds(@=prm(@e,, (@) g, D lxi, (5.4.3)
ds® = Bin®)e,®) gy )i (5.4.4)

are vectors given respectively in the a™ and b curved affine space with a corresponding stignature
(see §§ 1.17 through 1.18) .
Here, in turn,

0D = dxD /s (5.4.5)

are components of the tensor which effects the elongation of axes of the curved section of the @™ affine
space with the corresponding stignature from the matrix (7.10.13);
P = (') D .en @) = cos (&) en'?) (5.4.6)

are the direction cosines between the axes of the curved section of the @™ affine space with the same
stignature;

en'? is the basis vector specifying the direction of the m" axis of the 4™ affine space;

dx /@ is the infinitesimal segment along the ;™ axis of the d ™ affine space.

Let us return to the simplest level of consideration of a curved bilateral 2*-An,-vacuum region.
In this case, instead of the metric system (5.1.1) through (5.1.2), the outer and inner sides of the curved

portion of the 2°-Am ,-vacuum region of the vacuum are described by conjugates metrics

ds"™? = g;Odxidx with signature (+——-); (5.4.7)
ds2= g Mdxidy with signature (—+ ++), (5.4.8)

which, according to (5.4.1) through (5.4.6), can be written as

ds? = ds@ds®) with signature (+——-); (5.4.9)
ds? = ds'9ds@ with signature (—+++), (5.4.10)

where
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I ds'® = prm@e, D, D¢yl with signature {————} (5.4.11)

H ds® = pinPe, o/ with signature {—+++} (5.4.12)
\Y% ds© = prm9e,©ayOdx!  with signature {++++} (5.4.13)
H ds' ) = pinde, Do Ddxi  with signature {—+++}. (5.4.14)

Let's find variations of all possible binary scalar products of the vectors (5.4.11) through (5.4.14)

5 (dsds®) = & (ds@)ds® + ds@{ds®) with signature (+— — ) (5.4.15)
O (ds9ds ) = 6 (ds')ds'D + ds'@ Kds'P) with signature (—+ ++) (5.4.16)
5(dsDds®) = & (ds)ds® + ds s with signature (— ———) (5.4.17)
O(ds9ds®)) = 6 (ds')ds® + ds'@ KdsP) with signature (—+ ++) (5.4.18)
O (ds'Dds Dy = & (ds'Nds'D + ds 9 Kds)) with signature (+——-) (5.4.19)
S(dsDds®)) = 5 (ds'D)ds® + ds'D Kds)) with signature (++ + +). (5.4.20)

Among them, only four variations with different signatures are different

I AdsOds D) = 5 (ds)dsD + ds© Kds'?P) with signature (—++ +) (5.4.21)

H S(dsds®)) = 5 (ds'D)ds®) + ds'P Kds) with signature (++ + +) (5.4.22)

\Y S(ds'9ds®)) = & (ds')ds® + ds@ K ds®’) with signature (+——-) (5.4.23)

H’ S(ds'Dds ) = 8 (ds'9)ds + ds' DK ds'®) with signature (———-). (5.4.24)
The physical meaning of metric layers with signatures (— — — —) and (+ + + +) is found in con-

sideration of infinitesimal thickness 23-Am-vacuum region between metric layers with signatures

(+——-)and (—+++).
We define a set of "pseudo-force fields", i.e. fields associated with accelerations of a local area

of the "vacuum" of various types, resulting from the vanishing of the first variations of the four possi-

ble functionals in

3 1ds =] { 5B Den Do et +BD Sen @ api D!+ D@ Sorpi D+ e i) S} =0,
S1ds®=[{ 5" De, Oy O)lx + Bin®) Se, Oy Ol + Lin®le,b) SoyfOdhd + fin®le, ey ) st = 0,
6.'.6[3(6) :I{gﬁpm(c)em(c)api(c)dxi +ﬁpm(c) &m(c)api(c)dxi +ﬁpm(c)em(c) 5api(c)dxi+ﬂpm(c)em(c)api(c) 5dxi} = 0,

Slds@=| { P De, Dy Db + [ S, Dy D + e, D Sy Delxd + finDe, Doy DSy = 0, (5.4.24)
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which decompose into variations of 16-sub-functionals.

H \% H I i

S5 1ds' = [ 5B @e Do, D et + [ B Sen @i D dxi+ [P e @ Sopi D+ Ve D i Sdx =0,

Slds®= | PO, oy P + | 5 Se, Oy Ol + | 5 ®)e,,(b) 5Ol + | 5in®e,,)gy ) Sdxi = 0,

é'IdS(C): I5ﬁpm(0)em(c)api(c)dxi+ J‘ﬂpm(c)é‘em(c)api(c)dxi + J‘ﬂpm(c)em(c)&pi(c)dxi"'_"ﬂpm(c)em(c)api(c) &in: 0,

S1ds @ = [§pnDe, Doy Db+ [BIn Se, Doy D + [BinDe, () gy D + [finDe,Doyid s V= 0. (5.4.25)
Substituting the variations (5.4.25) into the expressions (5.4.21) through (5.4.24), we obtain 32

types of different fields corresponding to the acceleration of local sections of a 2°-An»-vacuum region,

1.e. pseudo-force fields of the void (Figure 5.4.1).

Fig. 5.4.1. Fractal illustration of accelerated intra-vacuum currents, which determine the manifestations
of various fields of acceleration of the local area of the "vacuum"

As part of the development of the general dynamics of vacuum layers, a series of other possi-

bilities should be considered that may prove useful for solving a number of geometric-dynamic prob-

lems. In particular:
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1). In § .14, from a diagonal quadratic form, for example, with the signature (+ — ——)

qodx’ +q,dx’ g dx' +ig,dx’

ds'™? = g dxX’dx’ — g, dx'dx' — g,,dx’dx’ — gy dx’dx’ :[ 3J (5.4.26)
det

g dx' —iq,dx’  q,dx’ —q,dx

(where ¢, =\/g: ), a linear form was obtained in the form of an 44-matrix

&’ +qdx g dx +igdx 10 0 -1 0 —i -1 0
Affw): o 1 .q3 2 & 0 & :qodxo _qldxl _%dxz . l“13dx3 > (5.4.27)
g dx' —ig,dy’  q,dx’ —qydx’ 0 1 -1 0 0 0 1

In this case, the dynamics of the vacuum layer with the signature (+ — — —) is determined by the
vanishing of the first variation of the functional of the form

N 1 0 0 -1 0 —i -1 0
S A )=5f(qodx0[0 lj—qldxl[l Oj—qzdxz[i OJ_%dx{O 1]):0- (5.4.28)

Similarly, the dynamics of all other vacuum layers of the form (7.74.6) with all possible signa-
tures (1.11.5).
2). In § 1.15 one regards the Dirac representation of a diagonal quadratic form, for example,
with the signature (+ + + +)
ds* = goodx’dx® + gnidx'dx' + gndx’dx® + gsdidx® (5.4.29)
in the form of a product of two affine (linear) forms

ds? = ds’ds "= (yoqodx"’ + yiqidx' "+ yaqadx® + p3q3dx® ") (yoqodx” "+ yiqrdx' "+ yaqadx® "+ yaqadx® )

where ¢, 2@; (5.4.30)
. represents the objects that satisfy the anticommutative relation of the Clifford algebra
Yurn t yn Yu=20un, (5.4.31)
The condition (5.4.31) is satisfied, for example, by the following set of Dirac 4x4-matrices:
1 0 0 O 00 01 0 0 0 —i 0 0 1 O 1 0 0 O
01 0 O 0010 0 0 i O 0 0 0 -1 01 0 O
7=loo0 -1 0] "Tloroo oo o] “[1t oo ol oo o
00 0 -1 1 000 i 0 0 O 0 -10 0 0 0 0 1
(5.4.32)
A variation of the product of two linear forms (5.4.27) is equal to
Ads’ds”)= O (ds’)ds "+ ds’Xds ). (5.4.33)
In this case, the dynamics of a vacuum layer with the signature (+ + + +) is determined by the
expressions
SNds’= S(poqodx”’+ yigidx"’ + y2qadx®’+ y3gq3dx®’) = 0, (5.4.34)
SNds = &(poqodx" "+ yiqrdx' "+ yaqadx® "+ y3gadx® ) = 0. (5.4.35)
Similarly, the dynamics of all other vacuum layers with all possible signatures (5.3.18) is de-
termined.
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The further development of these directions of vacuum dynamics is left for mathematicians,

with the certainty that they will be then utilized by physicists.

5.5 Overall dynamics of the metric space with constant curvature [34]
Consider the generalized metric
ds® = gidx'dx/, (5.5.1)
with any signature whose components of the metric tensor are independent of time
gij = const . (5.5.2)
We rewrite the quadratic form (5.5.1), selecting the components with zero indices:
ds*= c*goo di* + 2cgoa dxdt + gapdx®d®, (5.5.3)
where o, f=1,2,3; dx" =dt.
To the right-hand side of (5.5.3) we add and subtract the square of the quantity

ogdx”
— (5.5.4)
)
As aresult, we obtain [34]
L2
ds? =c? goodt—kM —{— gup +M}dxadxﬂ, (5.5.5)
v 800 &oo

whence for an curved area of a 4-dimensional space we have an analog of proper time [34]

Z0a e VE00 (dxo +gﬂdxa}

dTZ goodt+— UJIn dT=
¢4/ &00 ¢ goo

The second term in (5.5.5) is the square of the distance between two points in a 3-dimensional

(5.5.6)

metric space

8oa80p

dP = — (gap — Ydxdx? or dPP = yupdx®dx”, (5.5.7)

goo
where a 3-dimensional metric tensor
go0a8o0p

Vop = "8ap + 200 : (558)

The expression (5.5.5) with allowance for (5.5.6) and (5.5.7) takes the invariant form
ds*=c*de® — dP, (5.5.9)

corresponding to a reference system in which the local region under investigation of one of the sides of

the vacuum region is at rest.
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Now we can introduce the 3-dimensional velocity of the local region of the vacuum layer,

whose metric-dynamic properties are given by the components of the metric tensor (5.5.2) [34]

c(— s+ EoaBop ]dx“dxﬂ

V:j_’: cdl _ 8w . (5.5.10)
T @[onrgod dxaj @[onrgod dxaj
&goo goo

Covariant components of the velocity vector v, are determined by the expressions [34]
Va=gapVP, V=Vl (5.5.11)
Taking into account (5.5.10), the stationary metric (5.5.3) can be represented in the form
ds* = goo(dx® — g dx®)*(1—V*/c?), (5.5.12)
where a 3-dimensional vector has been introduced

g, =-S5 (5.5.13)

Eoo
The components of the 4-velocity u'=dx'/ds, taking into account (5.5.12), are equal to [34]

177 a
0 1 8oV a v

u = =+ >’ o= > - (5.5.14)
1/goo\/l—vz c\/l—v2 c l—v—2
c c c

To determine the acceleration of the local portion of the vacuum layer, we use the equation of
the geodesic (5.2.15).
We find the Christoffel symbols (5.2.16) for the case under consideration [34]

I"%0="Y2 goo* (5.5.15)
I %p= "2 goo (8%p—g“p) — V> gp g00'* (5.5.16)
I %gy= A%+ V2 goolgp(g% — g%) + g/ (g% — g%p)] + V2 gp &y g00'%, (5.5.17)

where

g%, indicates a covariant derivative, which in this case coincides with the usual partial derivative [34]

a a

gt =L _Lrigt="2 (5.5.18)

ky ax;, 9

A%g, 1s a 3-dimensional Christoffel symbol composed of the components of the metric tensor gqp just

as "'y is composed of the components of gix .

In these expressions, all tensor actions (covariant differentiations, raising and lowering indices)
are performed in a 3-dimensional space with the metric gqs over the 3-dimensional vector g# and the
scalar goo.

Substituting expressions (5.5.15) through (5.5.17) into the equation (5.2.5), we obtain [34]

du®/ds= — Foo*(u®)* — 2 Top“u’uP— I, uPu? (5.5.19)
and, using the expressions (5.5.14) for the components of 4-velocity, after the transformations we have
198



v d v oo V8 (g 5= 85 W %yVﬁVy

ds  ds V2 - v? V2 ) of, V) (5:520)
C l—c—z 2g00 I—CT Ci I—CT C 1—07

The acceleration is the derivative of 3-dimensional velocity at the proper time, determined by

means of three-dimensional covariant differentiation [34]
2 a 2 a a Vﬁv}’
a“=c\/1—v—zDL=C AT 1y (5.5.21)
¢? ds ¢ ds \/l_vz \/ p?

Taking into account (5.5.17) for the 3-dimensional acceleration of the local stationary section

of the vacuum layer with the metric (5.5.1) and the components of the metric tensor (5.5.2), and omit-

ting the index « for convenience, we finally have [34]

2 ol og aa
a, =—=< { n@ s (- d } (5.5.22)

or in the vector form [34]

, B
- {—gmd(lnx/gﬂ@[%xmfﬂ}, (5.5.23)

G=
\%
==

C

where g (g,,¢,,83) is the three-dimensional vector with components &, =— Zo(z ; (5.5.24)
00
sodl_ cdl (5.5.25)
dr
\/a (xo 4 Sa gya ]
8oo

is the vector of 3-dimensional velocity of the local section of the vacuum layer.
We note once again that the acceleration vector (5.5.23) with the components (5.5.22) was ob-
tained under the condition that the component of the metric tensor gj is stationary (i.e., not depending

on time x°= ) {see (5.5.2)}.
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5.6 The vectors of the field strength and induction of the vacuum layer

Consider the vector expression (5.5.23)
. 1 [q ﬁ]
a=—— —grad(ln1/g00)+;v>< Soolot g|p (5.6.1)

1=
C

We introduce the notation

E,=-ygrad ¢, B.=y goorotﬁ/c , (5.6.2)
where
T =g, A=g. (5.6.3)
==
c

In this case, the acceleration vector (5.6.1) becomes
a=E,+[vxB)], (5.6.4)
Let us compare the acceleration vector with the Lorentz force
F: =gE +¢g[v x B],
or
Fi/q = E +[v x B], (5.6.5)
where
E is the electric field strength vector;
B is the induction vector of the magnetic field;
q 1s the charge of the particle.
In an obvious analogy, expressions (5.6.4) and (5.6.5) allow us to consider the vectors (5.6.2) in

the following way:

E., is the vector of the field strength of a vacuum layer with components

o1 o1 ol
Evlzy%, E,=yS V80 E, =y S8  (566)

3
ox? Y ox’

B, is the induction vector of a vacuum layer with components

0 0 ) 0, —( 0 0
B,=y goo( 2, _ﬁja B,=y goo( gl_ﬁ]’ Bsy=y goo(aif _gg;j (5.6.7)

? ox’ ? ox'

Eor g__& g3__&_

oo 8oo 8oo

£
=
Q
=
o
09
I
|
S5}
|
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Vectors E, and B, describe the dynamic steady state of the local area of the vacuum layer
whose metric-dynamic characteristics are determined by the metric (5.5.1) with the stationary compo-

nents of the metric tensor (5.5.2).

Z

To clarify the physical meaning of the vectors E, and B., 2 y'
we consider an arbitrary motion of an affine space (i.e., the refer- f,
ence frame) K’ (¢/x’yz’) with respect to the affine space (i.e., the r/ k' {' X
reference frame) K(z,x,y,z) at rest (Figure 5.6.1) . I, Mk

It is evident from Figure 6.1 that the radius vectors r and r’ % . J y
defining the position of the point M in the systems K and K, re- .
spectively, are connected by the relation 4

r=rotr’ (5.6.8) Fig. 5.6.1 The motion of the refer-

ence frame K’ with relative to the

. N _ S/ s S i
or ixtjytkz=ro+ti'x'+jy'+k’z’ (5.6.9) stationary reference frame K [6]

where i, j , k are the orthogonal unit vectors defining the direc-
tions of the axes of the motionless affine space K with stignature {+ + + +};
i’, j', k' are the orthogonal unit vectors defining the directions of the axes of the mobile affine space K’
with stignature {+++ +}.
The velocity of the point M (belonging to an affine space K') with respect to the system K for
t’=t is obtained by differentiating both sides of (5.6.8) [25]
Vo= drldt =droldt + dr’ldt, (5.6.10)
while taking (5.6.9) into account we have
Vva=vo+ (x’di'/dt + y’dj'ldt + z’dK'Idf) + (Vdx1dt + j'dy1dt + K'dz1df).  (5.6.11)
The unit vectors i’, j', k' belonging to the mobile affine space K" may change with relative to
the affine space K only due to its rotation around the point O’ with angular velocity Q. Therefore, the
derivatives with respect to time of i’, j’, k' are equal to the linear velocities of the endpoints of these

vectors under rotation of the system K’[25]

di'ldt=[Q x1i'], djldt=[Qx]j'], dk'ldt=[QxK']. (5.6.12)
Substituting (5.6.12) into (5.6.11), we obtain
Va=vo+ [Qx ']+ ({'dxTdt + j'dy1dt + K'dz 1dt). (5.6.13)
The acceleration of M relative to the frame K at ¢"= ¢ is equal to [25]
a=dv./dt=a,+ac+ ar, (5.6.14)
where
a,= ('d*>x1df + j'd*y1df + K d*z 1di%) (5.6.15)

1s the relative acceleration;
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ac = dvoldt+ [dQ/dt x ¥'] + [Q x [Q x 1']] (5.6.16)
is the proper acceleration.
ar =2[Q x v/] (5.6.17)
is the Coriolis acceleration.
We rewrite expression (5.6.14) for the stationary case dvo/dt =0 and [d€/dt x ¥'] = 0 in the fol-
lowing form:
a=ap+2[Q x v/, (5.6.18)
where
ape = (Vd*x 1df? + j'd’y 1dP + K'd*z1d?) + [Q x [Q x 1']] (5.6.19)
is the stationary relative proper acceleration of a mobile affine space.
Taking into account the relation known in analytic geometry, the expression (5.6.18) can be
represented in the form
[Qx v ]=—[vrxQ], (5.6.20)
Equation (5.6.18) can be expressed in the form
a=ap.—2[vr x Q. (5.6.21)
Comparing the acceleration of the affine space K’ in the neighborhood of the point M (5.6.21)
with the acceleration (5.6.4) a = E, + [v x B,], the following analogy is found:
Ev=ap, Bi=-2Q, v=v,. (5.6.22)
Thus, it turns out that with respect to the affine space at rest (i.e., the reference frame) K (x,),z):
¢+ the vector of the strength of the vacuum layer E, is identical to the proper acceleration with torsion apc
of the local part of the mobile affine space K in a neighborhood of the point M ;
¢ the vector of the induction of the vacuum layer B, is identical to the double of the stationary angular
velocity of the rotation Q of the same region of the mobile affine space K’;
% the velocity vector v corresponds to the speed of a constant moving v, of the same section of the affine
space K ’with respect to the affine space K.
Within the framework of the Algebra of Signatures, each of the reference systems K’(¢, x’, y’, z’) and

K (¢, x, y, z) can have any of the 16 possible stignatures {see (1.8.2)}

8
o
J’_
+
!

2, (5.6.23)

——
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«"""\f‘_’i_\-\/—"“\
+ +
|+
I+
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,—lfb\
|
+ +
+
—— N
=
f-'\-\/"/‘"\/—l’\—\r"’“\
+ +
|
+

+
|
+
|

therefore there are 256 possible variants of motion of two affine layers relative to one another.
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5.7 The vectors of tension and induction of a 2%-An n-vacuum region
In point 5.5 we give information well known to field theory specialists [34]. We now consider
23-Amn-vacuum regions within the framework of the Algebra of Signatures.

We rewrite the expression (5.2.22) in the form

X pro & & A (5.7.1)
ds " ds ds " ds ds
where a consideration of the previous paragraph shows that, for the simplest level in Alsigna, the ac-
celeration of the steady state bilateral curved 2°-As,,-vacuum region has the form
a®=2a0 +ja® (5.7.2)
where
a0 isthe acceleration vector (5.5.23) into which the corresponding components of the metric tensor of
subcont g are substituted (5.1.6);
a™ isthe acceleration vector (5.5.23) into which the components of the antisubcont metric tensor g;*"
are substituted (5.1.8).
The complex numbers of the expression (5.7.2) indicate that the vectors a®) and a® are mutual-
ly perpendicular.
For the stationary case, the vector expression (5.7.2), taking (5.6.4) into account, takes the form
a®=E,O+ [vOx B, O] + {(E,® + [v®Y x B, ")), (5.7.3)
or
a® = (E, O +iE, ) + ([vO x B, O] + i[vVx B,M)).

Similarly, considering the level of the 25-Ax»-vacuum region based on (5.3.14), we obtain

age=n1aY + pa® + y3a® + pa® + (5.7.4)
+75a® + pea® + p7a? + pga® +
+n9 a® + 102"+ pra + 5al? +
+n3at¥ + 142t + 152> + 516219
where
a9 is the acceleration vector (5.5.23) into which the corresponding components of the metric tensor
gi'? (5.3.2), with the corresponding signature from the matrix (5.3.3), are substituted.
For the stationary case, the vector expression (5.7.4) with allowance for (5.6.4) can be repre-
sented in the form
16
dygy =D 1, (E +[V x B]). (5.7.5)
=1
The total dynamics of the following stationary 2'°- 1, ,-vacuum region and the dynamics of all

subsequent deeper polyhedral vacuum layers off to infinity {see § /.16} can be developed analogously.
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5.8 Metric-dynamic models of the «electron» and the «positron»
From the development of the overall dynamics of vacuum layers, we turn to the study of par-

ticular cases of various interactions between vacuum formations.

Fig. 5.8.0. Fractal illustration of a local vacuum formation

First of all, consider the «electrony - «positron» and «electrony - «electron» interaction. To this
end, we recall {see § 2.6} that within the framework of the light-geometry of a vacuum based on the
principles of the Algebra of Signatures, the resting «electron» is a stationary (stable) spherically sym-
metric (convex) vacuum formation, which at the level of consideration of a 23-An-vacuum region is

approximately described by a set of 10 metrics with the signature (+ — — —):
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«Electron»

Stable vacuum formation with signature
(+==-)

consisting of the following parts and curved vacuum layers {see (2.6.22)}:

The outer shell of the «electron»
in the interval [r, 73] (Figure 5.8.1)

2 2
d .
ds2 = l_r_6+”_2 2di? _;—rz(dﬁz +sin’ Hdgoz),
ror reo 1’
I——+—
roorn
2 2
dS;Jr***)Z — 1+ri_r—2 Czdz‘z —L—rz(dﬁz +Sin2 6d§02)5
r 7”3 l l"i_ﬁ
r 1’32
2 2
d :
dsi7 = l_r_é_r_z cldi* — il - —rz(dé?z +sin’ Hdgoz),
roon g
roor
2 2
ds§+---)2 = (1+rl+r_2]czdt2 _L—rz(dﬁz +sin ed(ﬂz)’
roon re r’
(1+ +2]
roon
The core of the «electron»
in the interval [, 76] (Figure 5.8.1)
2 2
d .
ds% = 1_”_7+’”_2 c2dr? _;z_rz(dez +sin’ Hdcoz),
r 7"6 1’7 r
l-—"+—
r I/'62
2 2
d .
dst 7 = 1+’i_’”_2 24 _;2— rz(dez +sin’ Gdgoz),
roor (l T J
tT 2
roor
2 2
d .
s = l_r_7_r_2 c2d? _%_rz(dez +sin’ Gdgoz),
r 1’6 ( }"7 r J
)
r 7"6
2 2
r 7’6 ( i"7 7"2]
I+—++—
roor

Scope of the «electron»
in the interval [0, o)

s = dr —dr? —*(d6 +sin* 0dg?),

where

(5.8.2)

(5.8.2)

(5.8.3)

(5.8.4)

(5.8.5)

(5.8.6)

(5.8.7)

(5.8.8)

(5.8.9)

(5.8.10)
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r3~4-10"8 cm is the radius commensurable with the radius of the core of the «galaxy», inside which
is the core of the «electrony; if the core of the «electron» is within a biological cell, then the
metric 73 in (5.8.2) through (5.8.9) must be replaced by rs ~ 4.9:107 cm {see (2.6.20)}; if the
core of the «electron» is inside the «planet» core, then for 73 in the metrics (5.8.2) through
(5.8.9) it is necessary to substitute 74~ 1.4:10% cm, etc. {see Figures 2.6.1 through 2.6.3};

r6 ~ 1.7°10713 cm is the radius of core the of the «electrony;

77~ 5.8:107%* cm is the radius of the particelle (inner nucleolus) located inside the core of the «elec-

trony.

Outer shell

Fig. 5.8.1. Outer shell, abyss (rakya), core, particelle (inner nucleolus) and scope
of a spherical vacuum formation

Definition 5.8.1 The abyss (rakya) is a multi-layered spherical boundary (shell) between the core and
the outer shell of any spherical vacuum formation (Figures 5.8.1 and 5.10.5 through 5.10.8).
Definition 5.8.2 The scope is a kind of memory of the undeformed state of the spherical area of the
vacuum region under consideration.

The resting «positrony is a stationary (stable) spherically symmetric vacuum formation that is
negative (concave) with respect to the «electron», which, at the level of consideration of the 23-Am,n-

vacuum region, is described by a set of 10 metrics with the signature (— + + +):
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«Positron»
Stable vacuum formation with signature (— + + +)

consisting of the following parts and curved vacuum layers:

Outer shell of the «positron»
in the interval [re, 73] (Figure 5.8.1)

(5.8.11)

2 2
dsl(—+++)2 :_(l_r_ﬁ+r_2j02dt2+ d}" - +I"2(d92+sin2 9d¢)2)’ (58.12)
roon e T
( r rszj
2 2
ds{ % = — 1+’ﬂi—r—2Jc2aft2 +d;2+r2(a?92 +sin’ Hdgoz), (5.8.13)
r r3 [1+I"6_}"2j
roon
2 2
st = _"_s_r_zjczdtz b (a0 sin® 0dg?) (5.8.14)
r r _i_L
( r ”32J
2
ds (2 =_[1+FL+F_2]c2dz2 — - +r2(d92 +sin’ 9d¢)2); (5.8.15)
roor re r
(1++2j
r V3
The core of the «positron»
in the interval [, 7] (Figure 5.8.1)
2 2
ds 2 = _[1 _h, r_zjczdtz P — —~+ rz(al&2 +sin’ ¢9d<p2): (5.8.16)
roor ! ro
( r ”62J
2 2
ds{ 2 = —[1 +h r—z]czdt2 + Lz + rz(dez +sin’ Gd(pz), (5.8.17)
r I"G r r
[14‘_2
r 7"6
2 2
ds 7 = _[1 _h_ r_chzdﬁ — —+ r*(d6” +sin’ 0dg? ), (5.8.18)
roor T
( r 7"62
2 2
ds{ 7 = _(1+FL +r—2jc2dt2 — —+72(d6? +sin’ 0dg?); (5.8.19)
r g }"7 r
(1++2]
r 1
Scope of the «positron»
in the interval [0, o)
s = Pdi* — dr — 2 (d6 +sin’ 0dg?), (5.8.20)

where

73~ 4-10'8 cm is the radius commensurable with the radius of the core of the «galaxy», inside which
is the core of the «positrony; if the core of the «positron» is within a biological cell, then the

metric 73 in (5.8.12) through (5.8.19) must be replaced by 75~ 4.9-1073 cm {see (2.6.20)}; if the
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core of the «positron» is inside the «planet» core, then for 73 in the metrics (5.8.12) through
(5.8.19) it is necessary to substitute 74~ 1.4:10% cm, etc. {see Figures 2.6.1 through 2.6.3};
r6 ~ 1.7-107"3 cm is the radius of core the of the « positron»;
77~ 5.8:1072* cm is the radius of the particelle (inner nucleolus) located inside the core of the «posi-
tron».
Within Alsigna, the «electron» and the «positron» may be inserted into the hierarchical set of
spherical vacuum formations nested like matruschka (Russian nested dolls) (Figures 5.8.2 @ and 5.8.3)

{See §§ 2.5 through 2.6 and Figure 2.6.2}. But, in order to simplify, we consider the vacuum for-

mation consisting of a sequence of only three of them.

a)
Fig. 5.8.2. a) Fractal illustration of the sequence of spherical formations nested inside each other;
b) Fractal illustration of the hierarchy of local vacuum formations

Fig. 5.8.3. Fractal illustrations of a sequence of spherical formations nested in each other
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5.9 The outer shell of the «electron» and «positron»

Consider the outer shell of the «electron» (Figure 5.8.1), located inside the nucleus of the «gal-
axy» with a radius 73~ 4-10'8 cm.

Near the core of the «electron» 73 > r = 13~ 4-10'8 cm; therefore, in metrics in (5.8.2) through
(5.8.5), the terms 7/r3 can be neglected. In this case, the core of the «electron» can be considered prac-
tically free, and its outer shell can be described with a high accuracy (at the level of consideration of a
23 Amn-vacuum region) by a set of metrics

The outer shell of the «electron»
with signature (+ — — -)
in the interval [~2.3:107* ¢cm, ~10'® cm] (Figure 5.8.1)

2
dst " = (1 - r—(’chdtz 2467 1 sin? 0de? ) (5.9.1)
r e
.
2
ds{ 7 = [1 +ijc2dz2 __dr r2(do* +sin® 0dg?), (5.9.2)
: 146
r
2
dst = (1 _ﬁ)czdﬂ __a r(d6” +sin’ 0dg?), (5.93)
r s
r
2
ds{ % = (1 + i}czdtz oA rz(dﬁz +sin’ Hd(oz), (5.9.4)
r

(%)

We average the metrics (5.9.1) and (5.9.3), and also (5.9.2) and (5.9.4)
Y (ds1® "2+ dssC 2y v (dsa 2+ dsaC ), (5.9.5)

As a result, to describe the outer shell of the «electron» we obtain the following set of two metrics

The outer shell of the «electron»
with signature (+ — — —)
in the interval [~2,3:107'3 cm, ~10'® ¢cm] (Figure 5.8.1)

2
ds 2 = ds % = (1 _r_ﬁjczdﬂ __ar rz(dHZ +sin’ do’ ), (5.9.6)
r }"6
P
2
ds{ % = ds D% = (1 +riJc2dt2 o rz(a’6?2 +sin’ 0d¢2), (5.9.7)
: 1+
r

Similarly, to describe the outer shell of a free «positron» we have
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The outer shell of the «positron»
with signature (— +++)
in the interval [~2,3-107"% ¢cm, ~10'8 cm] (Figure 5.8.1)

2
ds( 7 = dg0? = —(1 —ri)czdﬂ L A r2(d92 +sin? ed(p2), (5.9.8)
’ s
2
dS§_+++)2 :dsl(+b)2 =—[1+&Jc2dt2 + dr +r2(d92 +sin? 0d¢)2), (5.9.9)
r

"
r
We note that the averaging procedure for two metrics of the type (5.9.5) corresponds to finding
the square of the modulus of a complex number of the form (5.1.10) ds @ = / 13 (ds1 + ids2).
Recall also that, for the convenience of describing the intra-vacuum processes in Alsigna, the
following neologisms are introduced {see Table 2.1.1}:
a-subcont is the region, described by the metric (5.9.6) with the signature (+ — — -); (5.9.10)
b-subcont is the region described by the metric (5.9.7) with the signature (+ — — —); (5.9.11)

a-antisubcont is the region described by the metric (5.9.8) with the signature (—+++);  (5.9.19)

b-antisubcont is the region described by the metric (5.9.9) with the signature (—+++). (5.9.13)

5.10 Vacuum electrostatics of «electron» and «positron»

The metrics (5.9.6) through (5.9.7) and (5.9.8) through (5.9.9) are stationary, so we use equa-
tions (5.5.22) and (5.6.1) through (5.6.7) to study the accelerated currents of the intra-vacuum layers
(5.9.10) through (5.9.13) in the outer shells of the «electron» and of the «positrony.

In the metrics (5.9.6) through (5.9.9), all the mixed components of the metric tensor are zero.

2P =0, g0™=0, g0?=0, go."?=0. (5.10.1)

Therefore, for the case under consideration, equation (5.5.22) takes on the simplified form:

(—a) (-a)
at® = ECO = - ¢’ Olnyge” — ¢* 0Olnygy (5.10.2)

e (-a)2 ' ox*“
/1_V 5 1/1+r—6
C r

1s the acceleration of the a-subcont ;
g™ = g = c’ 81n\/g(()6b) _ ¢’ 8ln\/g(()gb) (5.10.3)

" 1— V(fj)z ox* 1_}/76 ox*
C r

1s the acceleration of the b-subcont;
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¢ Onved” ¢ dlnyew” (5.10.4)

(+a) (+a)

a = E = — = —

“ " 02 x° r ox‘
6

1s the acceleration of the a-antisubcont;

(+b) (+b)
a? = EUP = _ ¢ O Vfoo ___ ¢ Oy fOO (5.10.5)
\/1 ()2 Ox \/1 o, Ox

2
c

1s the acceleration of the b-antisubcont,
where it is taken into account that, according to (2.1.48) through (2.1.51),
W2/t =y D22 = _pe/r VD2 =y (D22 = pefy | (5.10.6)
VO@2/c2 =y, a2/ 2 = _ pely, V[ e2 = 3, (022 = ey
Substituting the zero components of the metric tensors from the metrics (5.9.6) through (5.9.9)
g0t@=1—-re/r and goo™ = 1+rs/r, (5.10.7)
200" =—1+re/r and goo't? =—1—re/r (5.10.8)
into the corresponding expressions (5.10.2) through (5.10.5), in spherical coordinates we obtain:

e the components of the vector of the a-subcont tension (i.e., of the vector of the acceleration of

the a-subcont):
¢* Olnyl-r/r 3 czr6

a0 = o — _
r vr a % b
w+Q : 2%%-“
r r
a, " = E," =0, (5.10.9)
(-a) _ ppl-a) _
a,” =E," =0.
where i:g”(‘“)ﬁz_ - i;
or* or r )or

e the components of the vector of the b-subcont tension (i.e., of the vector of the acceleration of

the b-subcont):
4D = gD c? 81n,/1+r6/r:_ c’r,

5

a k
- 7 22 1476
r r
ay” =E\"” =0, (5.10.10)
ath = ECY =0,
where 1=g“(b>3=_(1+’”_6j2;
or* or r)or

e the components of the vector of the a-antisubcont tension (i.e., of the vector of the acceleration
of the a-antisubcont):
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Ga) _ gl _ _ ¢* Olny—(-r/r) _ czr6

or* ’
\/1+r6 " 2r2\/1—r6
r r

ay” = E" =0, (5.10.11)
al " =E;" =0.
where i:g”w’)ﬁ: 1-%e 2;
or* or rjor

e the components of the vector of the b-antisubcont tension (i.e., of the vector of the acceleration
of the b-antisubcont):

a(”’) =E(+b) _ c2 6ln1/—(1+}’6/}") c2r6

\/ oo 2r2\/1+r6
r r

af” = E" =0, (5.10.12)
(+h) _ ) _
a,” =E, " =0.
where i:g“(*“i: 147619
or* or r)or

We define the acceleration vector of the subcont in the outer shell of the «electron» in the same

manner as the vectors (5.7.2) — (5.7.3)
a0 =at +jatP=E, 9+ E,(P), (5.10.13)

Taking into account (5.10.9) and (5.10.10), the components of the given vector are equal to

2
) _ O _ [pCa2 b2 __ € re\/z
ar _Evr - Evr +Evr _—2’
2 f g
27" l—riz

al) =0, (5.10.14)

Similarly, the acceleration vector of the antisubcont in the outer shell of the «positrony is equal to
a) = a"@ + ()= E,00 +E,(), (5.10.15)

Taking into account (5.10.11) and (5.10.12), the components of the given vector are equal to
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2
& _pe _ [peaz . geez __ C N2
at? =B = \[EG p B = ST

7
2 6
2r -
r

al) =0, (5.10.16)

- _
a, =0.

When r >> r6, the acceleration (5.10.14) assumes

the approximate form

2
) _ <—)~*/§C Ts
Cla =F ~7—2.

vr

(5.10.17)

Whereas in classical electrostatics, the electric
field strength of a point-like electron in a vacuum is de-
termined by the expression:

e

E =——, 5.10.18
Y N ( )
where e=-1.60219-10""° C is the electron charge, and

&= 8.85419-10'2 F/m is the vacuum permittivity.
Comparing (5.10.17) and (5.10.18), we find the

correspondence

e V2

VRS 7c2r6, (5.10.19)

4re,

where it is seen that the meaning of the electron charge e
corresponds to the radius of the neck with a radius of
r6 ~ 2.8-1071% cm. (Figures 5.8.1 and 5.10.1), from which
the a-subcont flows to all directions with deceleration
(5.10.9), and to which the b-subcont flows from all direc-
tions with acceleration (5.10.10).

Let's summarize the interim result. Alsigna intro-
duced the concept of mobile continuous pseudo-media:
a-subcont, b-subcont, a-antisubcont and b-antisubcont.
Do these pseudo-media have a physical existence?
Alsigna is so far silent on this point. But if acceleration is
mathematically determined, for example in (5.10.9), then
inevitably there arise the questions: "acceleration of

what?" and “with respect to what is the acceleration?”

6)

Fig. 5.10.1. a) A schematic illustration of the
flow of the a-subcont into the abyss (rakya),
surrounding the core of the «electron», and

the flow of the b-subcont away from it

b) Fractal illustration of the abyss (rakya),

surrounding the core of the «electrony

Fig 5.10.2. Illustration of the light landscape,
the geodesic lines of which are curved rays of

light in a curved «vacuumy»
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Alsigna tends to indicate that the interlacing of mobile intra-vacuum layers (pseudo-media) is
only an illusory effect, similar to how we represent, for example, the seaside. Different types of entities
are deemed substantial for purely technical purposes, but when considering the philosophical questions
of ontological and epistemological nature about spatially extended Being, it is possible to disregard
such burdensome data, since Alsigna does not see anything except the curved light-geometric pattern
of the void.

So, considering the level of a 23-Am-vacuum region, the above mathematical apparatus allows
us to create the following visual interpretation of intra-vacuum processes in terms of continuous pseu-
do-media.

In the outer shell surrounding the core of the «electron» with a radius 76 ~ 2.8:107!3 cm, there
are two opposing radial currents:

- the a-subcont flowing in all directions away from the nucleus [with a deceleration (5.10.9)],
and
- the b-subcont incoming from all sides towards the core [with acceleration (5.10.10)].

Along each radial direction, these opposing currents (intra-vacuum currents) form a two-sided

helix (Figure 5.10.3).

a) b) ©)

Fig. 5.10.3. a) Spirals consisting of flowing inbound a-subcont and outbound b-subcont currents in the outer shell of the «elec-
trony»; b, ¢) Fractal illustrations of intertwined currents around a spherical object (in particular, around the core of an «electron»
or the core of a «positron»)
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Definition 5.10.1. The intra-vacuum current is a local
current of the pseudo-medium (a-subcont and/or b-subcont
and/or a-antisubcont and/or b-antisubcont) which spirals around
one of the radial directions.

A suitable analogy of such a spiral is a multi-twisted rib-
bon (Figure 5.10.4), on one side of which the b-subcont flows

towards the core of the «electron» with an acceleration, and on

TAAVAVAN
THAAVAVAN

the other side of the same ribbon the a-subcont flows away with a

deceleration in opposite direction. Fig. 5.10.4. Multi-twisted ribbons,
on one side of which the b-subcont
accelerates, and on the other side in

comes towards the abyss (rakya) at each point at a distance r g;ece?frg‘t’:;te direction, a a-subcont

In this case, according to (5.10.6), the b-subcont that
from the center of the core of the «electron» has a radial velocity
component

v =— (cPrelr)”, (5.10.20)
and the a-subcont flowing from the abyss (rakya) at the same points has a velocity
Vi@ = (Prelr)”. (5.10.21)
These speeds compensate each other on the average

v 4y, 00 = _ (Prelr)? + (Prelr)? =0, (5.10.22)

however, the joint acceleration of twisted a-subcont and b-subcont intra-vacuum currents is (5.10.14)

P (5.10.23)

We note the following aspects and consequences arising from the above mathematical model:
1. The velocities (5.10.20) and (5.10.21) and the acceleration (5.10.23) are determined with
respect to the resting scope of the «electron», whose metric-dynamic properties are given
by the quadratic form (5.8.10). The change in the «electron» scope (for example, by tran-

sition to another coordinate system) can lead to instability of the vacuum formation.
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In classical quantum electrodynamics, the effect of polarization of a physical vacuum
around a point charge is taken into account, which allows quantum theorists to introduce

concepts of an effective electric charge

ey~ e (5.10.24)
2 ,
1--¢ >1n f
6z~ 4rm,

where me is the electron mass and 7% is the Planck constant.

The electric field strength around the effective charge acquires the form

E = € (5.10.25)
r 1 -
2 2
47&901’2(1 — -1 h J
o 4rm,

In comparing expressions (5.10.23) and (5.10.25), taking into account (5.10.16), we again

find an obvious analogy

1 o 1 (5.10.26)

which allows us to state that the fully geometricized vacuum electrostatics of Alsigna
permits us to more harmoniously substantiate the logical constructions of quantum elec-
trodynamics.

. At r = re (i.e., in the region of the outer side of the abyss (rakya) of the «electrony,
Figure 5.8.1), the velocities of the flows of the a-subcont (5.10.20) and of the b-subcont
(5.10.21) tend to the speed of light c. It follows that the speed of light is the limiting ve-
locity of the flow of intra-vacuum layers. It will be further shown that an attempt to fur-
ther increase the speed of movement of local sections of intra-vacuum layers only leads to
a topological rearrangement of this «vacuumy region.

The acceleration of the subcont (5.10.23) in the same area at r = r¢ tends to infinity. Re-
call that according to (2.1.14) through (2.1.33), the relative elongation of the subcont in

the outer shell of the resting «electron» is equal to (2.1.33):
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2
r

1) = ~1, 15 =0, I5)=0, (5.10.27)

2 2
r —7"6

from which it can be seen that in the region of the abyss (rakya) (r = rs), the radial com-

ponent lﬁ_) also tends to infinity. Together, expressions (5.10.23) and (5.10.27) show
that in the approximation under consideration the core of the «electron» is surrounded by
a practically impenetrable (i.e., extremely compressed and resistive shell) abyss (rakya)

(Figure 5.10.5).

Abyss

(rakva)

w \ F e
t. o 4
/

AN ‘":\\..\ Outer shell

Fig. 5.10.5. Outer shell, multilayered abyss (rakya), core and particelle (internal nucleolus) of a
spherical vacuum formation (in particular, of an «electrony or a «positron») and its fractal illustrations

However, on closer examination it turns out that the abyss (rakya) is a much more complex,
multi-layered, flexible and permeable region enveloping the core of the «electron». A deeper
analysis shows that the abyss (rakya) of an «electron» is similar to the membrane of a biolog-
ical cell, or to the surface of a planet, or to the surface of a star (Figures 5.10.5).

5. In classical electrostatics electric field potential around a charge ge with strength (5.10.18) is

given by

q 4. [dr__q
=—|Edr=- ¢ dr=-—-—2¢ — = ¢ 5.10.28
Pe J ' -[ dreyr’ 4re, J ¥’ Amer ( )

and the potential energy between two spheres with radii 71 and 72, equal

27 27w 1y ry

Ue :J‘J. J’(oedl"ded(0=47z-2j' q. dr:ﬁqe J.ldr:%(lnrz_lnrl)zﬂlnr_z' (51029)
" 0 4re v & T & &, n

n n
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In Alsigna the role of the electric field performs the acceleration, so by analogy with (5.10.28)

we define the potential subcont tension

=-[EQdr=-[adr (5.10.30)

Thus, taking into account (5.10.14) the potential subcont tension in the outer shell of the «elec-

tron» equal

2
o) =—[a\)dr=-] a2, c”ﬁ 2| pe—€r2 e v, (5.1031)
) r2 \/r —r6 2 Ts
2 1—72

where we have used the tabulated integral

1
——arcsec—+C——arccos—+C (5.10.32)
J‘qux -a’ a X

The graph of the function (5.10.31) is shown in Figure 5.10.6.

—2.5132741228716x10°
—2.5132741228717x10°

—2.5132741228718=10°F ~

b(r) [ —

—2.5132741228719x10°1

—2.513274122872x10% |

—2.5132741228721x10% - " L

Fig. 5.10.6. Graph of potential subcont tension (5.10.31)
The calculations are performed using the MathCad software,
when 76=2,7-101"% cm, ¢=2,9-10" cm/c, C=0

Potential subcont tension inside the core of the «electron» (discussed in the following § 5.11),

with account of (5.11.32) equal to

2

(P;(z ) __J'ai;)dr__.[;dr_ 2c I4dr_ —c? arcsm +C (5.10.33)

r; fl—r—4 Vie =7
6

where we have used the well-known integral

1 .t 1 L x2
dex—| t = x? |—lf a EarC81nﬁ+C _ Earcsmﬁ-}-c
Va—xt 0 = _ =)= ) ! — ) 2
a—x dt = 2xdx /(\/H)Z_tz —arcos = +C —Sarcos = ny,

The graph of the function (5.10.33) is shown in Figure 5.10.7.
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Fig. 5.10.7. Graph of potential subcont tension (5.10.33)
The calculations are performed using the MathCad software
when r6=0.27 cm, ¢=2.9-10" cm/c, C=0

6. A similar analysis of the metrics (5.8.12) through (5.8.15) and (5.9.8) through (5.9.9), tak-
ing into account the accelerations (5.10.4) through (5.10.5) and the velocities (5.10.6),
shows that the «positron» is a negative copy of the «electron». If the free «electron» is
conventionally called a stable convexity in the vacuum region with the signature (+ — — —),
then the «positrony is a similar concavity with the opposite signature (— + + +).

7. If, in the equations (5.8.1) through (5.10.27) instead of the triplet of radii 3, re, 77 {see the
hierarchy of radii (2.6.20)}, one substitutes any other triple of radii from the same hierar-
chy, for example, r4, r6, 78 oOr r2,re,77 Or ri,re, ¥s Or 12, 16, 19 etc., then one obtains
the metric-dynamic models of various types of «electrons» («electronsy»4es, «electrons»267,
«electrons»ies, «electrons»eo, ...) and «positronsy («positrons»4es, «positrons»267, «posi-
trons»i6s , «positrons»2eo, ...), which differ in the structure of the abyss (rakya).

8. If, in the equations (5.8.1) through (5.10.27) instead of the triplet of radii 73, re, 77, one sub-
stitutes any other triple of radii from the hierarchy of radii (2.6.20), for example, r2, ra, rs
or ri,r3, s Of 71,14, ¥ OF 74, rs, r7 etc., one obtains similar «electron» and «positrony»
metric-dynamic models respectively of a naked (see Definition 5.10.2): «planet», «gal-
axy», «star», «biological cell» and so forth.

Definition 5.10.2. 4 naked vacuum formation is a stable curvature of the vacuum region of
any scale («electrony, «biological celly, «planety, «stary, «galaxyy, etc.) whose metric-dynamic model
is determined by a set of metrics of the type (5.8.1) through (5.8.20) as is shown in Figure 5.8.1. Many
smaller vacuum formations can be attracted to a naked vacuum formation. For example, many small

«particles» can be attracted to the nucleus of a naked «planet»: «biological cells», «atomsy, «elemen-

tary particlesy, etc. (Figure 5.10.8 b).
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a) b)

Fig. 5.10.8. a) Fractal illustration of the multilayered abyss (rakya) surrounding
the core of vacuum formation; b) Fractal illustration of the set of local vacuum
formations around the core of a larger naked stable vacuum formation

9. The mathematical apparatus developed here is suitable for describing any stable naked vac-
uum formations with different sizes (Figure 5.10.9). Therefore, studying one of the local
vacuum formations, for example, an «electron» - «positron» pair, we simultaneously ob-
tain information about: the metric-dynamic properties of a pair of male and female «bio-
logical cellsy», a naked «star»-«planetary» system, etc. Conversely, by studying, for exam-
ple, the metric-dynamic properties of a naked «planety», we also know the properties of the

«electron» or the «positron» (see Figures 5.10.9 and 5.10.10).

a)

Fig. 5.10.9. Shells: a) stars; b) a biological cell; ) «electrony.
Upon closer examination through the pores in the abysses (rakyas), a mutual correspondence is
found between the core and the outer shell of any stable vacuum formation
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Fig. 5.10.10. Fractals often surprisingly accurately reflect a speculative picture of the world which is
inaccessible to sensual human perception.

5.11 The core of the «electron» and «positron» at rest
We consider the metrics (5.8.6) through (5.8.10), describing the metric-dynamic state of the
core of the «electron», turning our attention to the 23-An ,-vacuum region

The core of the «electron»
in the interval [, 7] (Figure 5.8.1)

i 1 H \'% H’
2 2
I ds"? =(1—r—7+r—2]c2dt2 —QI;Z—rzdé’2 +r’sin’ §dp*> — a-subcont, (5.11.1)
roor o
[ r ”62]
2 2
H ds? =(1+}i—r—2]c2a’t2 —Lz—rzdé’z +r?sin* @dg*> — b-subcont, (5.11.2)
roor roor
roor
2 2
A% ds™? =(1—r—7—r—2chaft2 —d;Z—rza’H2 +r’sin*@dp® —c-subcont,  (5.11.3)
roor nr
[ roor ]
2 2
H’ dsD? = (1 o ”_2};2(#2 _ Lz —r’d0* +r*sin’ @dg* —d-subcont;  (5.11.4)
roor ( roor ]
I+—=+—
roor

Scope of the «electron»
in the interval [0, o)

j st = Pdi? —dr? —1?(d6? +sin* 0dg?), (5.11.5)

where 76~ 1.7-10713 cm is the radius of core the of the «electron»; 77~ 5.8:1072* cm is the radius of the

particelle (inner nucleolus) located inside the core of the «electrony.
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First, taking into account the inequality 76 >> r7 we neglect the terms 7 /r; under this condition,

the metrics (5.11.1) through (5.11.4) are reduced to two de Sitter metrics:

2 2
ds "2 = (l+r—2}32dt2 _Lz_r2(d92 +sin? 9d¢2)’ (5.11.6)
’s 1+
”'62
2 2
L (1 —r—zjczdtz 2467 +sin?0dg?). (5.11.7)
7'62

The arithmetic mean of these metrics forms a 2-braid {see (2.2.24)}:
dar’
%)
Ts
and (2.2.24) through (2.2.25)}, we find the relative elon-

gation of the subcont within the core of the «electron»

=) _ 500
10 :\/1 + & " 8&i 1 (5]19)

dsCP? = 2 — (40 +sin0dp?). (5.11.9)

0(-)
8

where the averaged components of the metric tensor g'”’
are taken from the 2-braid (5.11.8)

4
Ts

IR _
gl(l) =_(g1(1 )+g1(1b))=_ﬁ’ (5.11.11)
2 ry —F
SN A _ I A B .
8 zi(géz Vgl )=, gl =§(g§3 45" = sin’ 0,
gn ' =-1 gy’'=-r’, gu’=-r’sin’6.

Substituting the components (5.11.10) and (5.11.11)
into (5.11.9), we obtain

Fig. 5.11.1 The graph of the relative

P4 lengthening of the subcont (5.11.12) inside
107 = ——F -1, (5.11.12)  the core of the «electron»
re — T
Iy =0, (5.11.13)
19 =0 (5.11.14)
¢ . . .

The graph of the function (5.11.12) is shown in
Figure 5.11.1, from which follows that the subcont on the

periphery of the core of the «electron» is strongly

stretched, whereas in the middle of the core the stretching

of the subcont is virtually absent.

Fig. 5.11.2 Rotating core of
a vacuum formation
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According to the expressions (2.2.27) through (2.2.28), the velocities of the flow of the
a-subcont and b-subcont are equal, respectively, to

veCD = crire (5.11.15)

v = cr/rg . (5.11.16)
The given velocities in the center of the core of the «electron» (i.e., when » = 0, Figure 5.11.2)
are zero, and on the periphery of the core with the radius » = rs, they are near the speed of light c. More
precisely, the periphery of the core is rotated in a complex manner at the speed of light; therefore the
radial lines of the a-subcont and of the b-subcont currents for an outside observer look like spiral arms
(Figure 5.11.2 and 5.11.5).
We bring into consideration the metrics (5.11.1) — (5.11.4). Averaging the data of the metric

ds(—abcd)Z :%(ds(—a)Z +dS(—b)2 +dS(—c)2 +ds(—d)2) , (51 117)

we obtain the 4-braid

dr’

2 2 2 2

¥ r ¥ r I r r r
1_L+ 5 1+i—7 _i_7 1_|_i_+_72
r g r 193 r 1 r Ty

Substituting the components of the metric tensor from the 4-braid (5.11.18) and the scope

ds"™ " =df* — —rd@ —r*sin’ @dg’ . (5.11.18)

(5.11.5) into the expressions (5.11.9), we find in this case a relative lengthening of the subcont within

the core of the «electron»

) _ 500
Ir():\/1+g11 0(§11 1= : - 1 - ~ -1, (5.11.19)
oo, roor, oo roor
) _ ,00)
1) = 1+%_1=0, (5.11.20)
Exn
) _ ,00) st |
10 = /1+%_1=0_ (5.11.21)
&3 w1 .
The graph of the function (5.11.19) is shown l

—-10 -3 0 5 1

in Figure 5.11.3. From this graph it can be seen that

Fig. 5.11.3 The graph of the relative lengthening
of the subcont (5.11.19) inside the core of the
riphery, but also in the center of the core of the ’.'electron". The calculations were performed us-

ing MathCad 14 software with rs = 10 and r; =
«electron» (Figure 5.11.2), where its particelle (inner  0.01. At r¢ =2-107"* and r7 = 6-107%*, the result-

. Y - ing graph will be similar, but the wavelet in the
nucleolus) {i.e. the "proto-e” quark"} is found. middle will be barely noticeable.

the subcont is strongly stretched not only on the pe-
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We obtain, analogously, the velocities of the intra-vacuum layers inside the «electron’s» core

{see (2.1.48) through (2.1.51)}

I nns a-cyokonta (5.11.1) 1—ri/r+ lre* = 1-v %2 — v =c(—rrlr+ ) (5.11.22)
H gans b-cybkonta (5.11.2) 1+ rifr—r?lre? = 1= v 2 — v = c(ri/r—r*lreh)"? (5.11.23)
V  ans c-cyokonta (5.11.3) 1—ri/r — r*lre’ = 1= v 2/c? — v =c(— rmlr—rPlreé)?  (5.11.24)
H ans d-cybokonta (5.11.4) 1+ rifr+ lre* = 1- v D%/ — v = c(ri/r+ r*ire®) (5.11.25)

When r = r6 (i.e., around the periphery of the core of the «electrony), all velocities (5.11.22)
through (5.11.25) tend to the speed of light c. Similarly, at » = 77 (i.e., in the area of the abyss (rakya)
of the particelle (inner nucleolus), all velocities (5.11.22) through (5.11.25) tend to the speed of light ¢
too.

Thus, on the level of the 23- A, -vacuum region inside the

core of the «electron», on each radial direction four intra- | ﬂ {
. | |
vacuum flows (currents) are coiled. ’ . y

the c-subcont current) flow from the periphery of the core of the 1 .

\

Two of these helical currents (the b-subcont current and

«electron» initially at a speed close to that of light, then slowing e

=

down, and then nearby the abyss (rakya) of the internal particelle
(inner nucleolus) again accelerating to the speed of light.
Two other oncoming helical currents (the a-subcont cur- )

rent and the d-subcont current) flow from the abyss (rakya) of the

Fig. 5.11.4 A multiply-twisted quadri-
internal particelle (inner nucleolus), first at a speed close to the  lateral, on one side of which an a-
subcont is accelerating, on the other
side a b-subcont flows, on the third
side a c-subcont flows, and on the
fourth side a d-subcont flows

speed of light, then slowing down, and then at the periphery of the
«electron’s» core again accelerating to a speed close to the speed
of light (Figure 5.11.5).

In § 5.10 it was noted that, for clarity, it is convenient to assume that the oncoming a-subcont
and b-subcont currents flow along the two sides of the same twisted ribbon (Figure 5.10.4). Having the
4-braid composed of the four intra-vacuum currents, we can continue the comparison with the ribbon,
and we may assume that the given four currents flow on four sides of a repeatedly twisted parallelepi-
ped (Figure 5.11.4).

However, for an outside observer, the periphery of the core of the «electron» and its inner pe-
riphery of its particelle (inner nucleolus) rotate at a speed close to the speed of light in a complex

manner (Figures 5.11.2 and 5.11.5).
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Fig. 5.11.5 Fractal illustration of interwoven intra-vacuum currents around a
radial direction both inside as well as outside the rotating core of the «electron»

We define the radial components of acceleration vectors in intra-vacuum layers of the core of
the «electron» with the help of equations (5.10.2)

[ m)
g = c? Oln+/gs,

5.11.26
\/ pom?2 ox' ( :
1_
CZ
(=m)
or  gm____C 1 Olnygy (5.11.27)
| \/ v gy or
1=V
C

The remaining components of these vectors are equal to zero, similar to (5.10.9) through
(5.10.12).

Substituting into equation (5.11.27) the corresponding components of the metric tensors g|;"’

from the metrics (5.11.1) through (5.11.4) and the radial velocity components (5.11.22) through
(5.11.25), we obtain

r 1’6
2
_oln /1+——— 2(” f;’}
/ 6 — acceleration of the b-subcont,
2
2 1+ -1
r 7"6
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r,o 2

2
I r r

~0ln [1-" -~ cz(z—zJ

I- r r I, r ¢ .

a0 =c 1-L -2 LI 6 — acceleration of the c-subcont,

roor or r, 7>
2 1= -1
r 7"62

- 1+

— acceleration of the d-subcont.

(5.11.28)

In this case, the total radial acceleration of the subcont between the periphery of the core of the
«electron» and the abyss (rakya) of its internal particelle (inner nucleolus) is given by the quaternion

(see § 5.7)

a0 = at)+ jatD + jat+ fatd = " +i g +j 0" +ka? (5.11.29)

which describes the interweaving of 4 intra-vacuum currents around each radial direction (Figures
5.11.5,5.11.5 and 5.11.7).

The module of the vector of the total radial acceleration of subcost equal

0 = JaF 4 a1 g | g2, (5.11.30)

Fig. 5.11.6 Illustration of interlacing of accelerated intra-vacuum currents
wound around one radial direction
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Fig. 5.11.7 Fractal illustrations of various aspects of a representation
of a spherically symmetrical local vacuum formation

If in expressions (5.11.28) to neglect the terms the »7/7, we obtain:

— acceleration of the a-subcont,

— acceleration of the b-subcont,

— acceleration of the c-subcont,

— acceleration of the d-subcont.

The total acceleration of subconts in the core «electrons» in this case is equal to

(5.11.31)
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c_zr 1 1 1 1 20%r 20%r

a’ = \/ a"? +a™ +a" P 107 =

(5.11.32)
The core of the «positron» at rest, at the level of the 2°-Am,-vacuum region that we are consid-
ering, is a negative copy of the core of the «electron», as is easily verified by performing a similar
analysis with the use of metrics (5.8.16) through (5.8.20) and expressions of the type (5.11.6) through
(5.11.32).
In the study of the core of the «electron» at the level of consideration of a 2%-Ans~vacuum re-
gion, each metric (5.11.1) through (5.11.5) can be represented as a sum of seven metrics with signa-

tures from the left rank (7.73.1) or (5.11.33)

(+ + o+ - --)
---7) ++ +-)
+--7) -+ +-)
§+ L _g (5.11.33) Eft +I)) (5.11.34)
-+ - ) -+
(+ — + =) (= + — 1)
¢ C + + o

For example, the metric (5.11.1) with the signature (+ ———)
I~ 7’2
dsc? =\ 1=+ |2ar - — (40 +sin’ 0dg®)  — a-subcont
ror ( roor j

is represented as the sum of seven analogous sub-metrics with the signatures (5.11.33):

2

dr
2
roor

2
a v
ds©"? = (1 ——7+—2Jc2a’t2 +

r ¥

+r2d0* +r*sin* Odep* —  — ai-subcont

2 2
ror dr )
- 1-=L+— cdt’ ——2—r2d02 +r°sin’ @dp* + — az-subcont
o nLr
r 1’62
2 2
v, r dr )
+H1-"ZL+— cdt’ ——2—r2d492 +r’sin’@dp>—  — as-subcont
roor T
-+
roor
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2 2
—(1 Sh r—zjc%zﬁ —Lz +12d6* —r*sin’ @dp*+  — as-subcont
ror ( r,or ]
r 183
v dr’
+| 1-L+= |*dl* + ———<—r’d& —r’sin* @dgp’ —  —as-subcont
r s r, r
roor
o ar’
—[1-Z+— |Pd* + . —r’d6* —r*sin’ @dg> +  — as-subcont
r 183 ( r r )
-+
roor
ror dr’
+ =L+ |Pdt’ ————<+7°d0* —r’sin’ 0dp” - — az-subcont. (5.11.35)
S

In the study of the "positron" core at the level of consideration of the 2°-Au-vacuum region

each metric (5.8.16) through (5.8.20) is represented as the sum of seven analogous metrics with signa-
tures from the right rank (7.73.1) or (5.11.34).

For example, the metric (5.8.16) with the signature (—+ + +)
2 2 .
ds = 1= | ar + Y 12(a0> +sin*0dp?)  — a-antisubcont
-7 40
r rg

is represented as the sum of seven sub-metrics with the signatures (5.11.34)

2 2
ror dr . .
ds"? = 1-1 +— c’dt’ -~ —r*d@* —r*sin* 0do® + — a1-antisubcont
roor ror
roor
o r? .
+| 1=L+— |%dt* + —~+r°d6” —r’sin’ @dg’—  — ax-antisubcont
ror o
roor
roor dr’ .
—|1-ZL+— |c’dr* + ——~ t r’d6* —r’sin’ @dp* +  — as-antisubcont
roor ror
-+
ror
v dr’ .
+| =L+ |?dt* + ———<—7r’d0’ +r’sin’ Odp’ —  — as-antisubcont
roor
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2 2
-2+ czdtz—Lz+r2d02+r2 sin>@dg>+  — as-antisubcont
ron L
r 1’62
roor dr? .
+ 1-Z+— |?d’ ——————<+r’d0’ +r’sin’ @dp’ -  — ac-antisubcont
r I"6 _ri L
r r62
oot dr’ :
1=+ |FPdt* + ————<—r*d0 +1r’sin* Odg’ — ar-antisubcont.
roor

(5.11.36)

Mathematical techniques for the analysis of metrics of the type (5.11.35) or (5.11.36) at the
level of consideration of a 2°-Am,» -vacuum region remains the same as on the level of consideration of
the 23-Amn-vacuum region. However, in this case we have much more subtle and intricately woven in-

tra-vacuum currents (Figure 5.11.8), the number of which is increased by 7 times.

Fig. 5.11.8. Fractal illustrations of the interweaving of intra-vacuum currents
at the level of consideration of a 2°-4,, ,-vacuum region

At the level of consideration of a 2!%- 4 -vacuum region each of the seven metrics (5.11.35) or
(5.11.36) can be represented as a sum of seven other metrics with the respective signatures, etc. (see
§ 1.16). Thus, subject to the following paragraph, the Algebra of Signatures (Alsigna) offers a mathe-

matical apparatus that allows one to look into the depth of a vacuum.
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Fig. 5.11.9. Alsigna provides the ability to dive into Infinity with the use of mathematical apparatus,
which is consistent with the Doctrine of the Sefirot Tree and other fundamental principles of Lurianic
Kabbalah (i.e., the Internal TORAH)

5.12 Isospin of the cores of the «electron» and «positron» at rest
We recall that a quadratic form with any of the possible signatures of ranks (5.11.33) through
(5.11.34), represented in diagonal form [for example, metrics (5.11.35) and (5.11.36)], can in many
ways be written as the determinant of a second-rank spin tensor (see § 1.14).
For example, the diagonalized quadratic form with signature
ds?* = goodx’dx’ — gridx'dx' — gndi’dx® — gszdx’dx’ (5.12.1)

is the determinant of one of the 2x2 Hermitian matrices (spin tensors )

(5.12.2)

dx’ + y,dx’ dx' +iy,dx’
ds'™? = g ,dx’dx’ — g, dx'dx' — g,,dx’dx’ — g, d’dx’ = [yo & . P2
det

yodx' —iy,dx’  ydx’ —y,dx’

which can be represented as an 44 -matrix

X +y,dx”  y dx +iv,dx’ 10 0 -1 0 —i -1 0
Af;ﬂz Yo x1 .y3 . xo & :yodxo _y1dxl _yzdx2 . l _y3dx3 > (5123)
ydx —iv,d  y,dx’ —yydy’ 01 -1 0 i 0 0 1

L 10 L 0 -1 . (0 =i .., (10
oy ):(O J ol ):[—1 Oj o ):(i Oj ol ):(O J (5.12.4)

is the set of Pauli matrices.

where
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Similarly, for a diagonalized quadratic form with inverted signature (— + + +), we have one of

the variants of its representation in the form of an 44-matrix:

Vodx” + ydx” iy dx' + y,dx’

ds"? = —g dX’dx’ + g, dx'dx' + g,,dxX’dx’ + g dx’dx’ ( ] (5.12.5)

iy dx' — y,dx” = y,dx’ + ydx’ »

A’ +y,dx” iy dx +y,dx’ -1 0 0 i 1 10
AP = ?’0 X Fysaxs b, xo Y2 . =y, d +ydy| ! +y2dx2 +y3dx3 , (5.12.6)
v dx —y,dx =y, dx’ +y,dx 0 1 i 0 -1 0 1

O{;):(—l 0} G](+>:(0 i} §+>_(0 1} 04;):[1 0] (5.12.7)
01 i 0 10 01

is the set of Cayley matrices.

rae

Suppose that all elements of length dx’ are equal to one (dx’ =1), then the As-matrices (5.12 3)
and (5.12.6) take the form

A;):(yo"’"ys J’1+iy2j=[yo Oj_(o _ylj_(.o _iyzj_(_ys O} (5.12.8)
N = Vo= 0 ¥ N 0 v, 0 0

Ai+)=[.)’o+y3 iyl""yzjz{_yo 0]4_(.0 ile_l_(O sz_'_()@ O} (5.12.9)
W=y, YtV 0 ») W 0)\-y 0 0

For example, let us represent the metric (5.11.1) in the form of the determinant of a spin tensor
of the type (5.12.5)

2

1= cdi—rsinlp  ——L_dr—ird6
r rs _ﬁ L
I H r r62
H V)
——dr+ird0 .
/1 r ——7+—cdt+rs1n9d(p
T 7

det

We write down this spin tensor, taking into consideration that dx' =1:

2
r
1— +— —rsinf

1 .
> T
r ]"6 ;/-7 7
-74+5
ol . (5.12.10)
- r 1——+—cdt+rsm<9
— 7 \
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We also note that any binary event with the probability of its outcome being ' (e.g., the rota-
tion of a ball clockwise or counterclockwise, coins landing on heads or tails) may be described as

spinors. For example, the clockwise rotation is formally described by spinors (i.e., "bra" and "ket" vec-

|Z+>=\g@ n |Z+>*=<Z+|=\g(1 0) (5.12.11)

(2 +|24)=1( 0)@:%

In this counter-clockwise rotation is formally defined by spinors

70— l(oj . |Z—>*=<Z—|=\g(01) (5.12.12)

211

tors)

such that

such that
<Z—|Z—>:%(O 1)@:% . (z-z+) :%(o 1)@:0 :

At the level of consideration of a 23-Am ,-vacuum region inside the core of the «electrony, there
are four intra-vacuum layers (5.11.1) through (5.11.4). Therefore, to study their isotopic rotation (iso-

spin) we use the following spinors

74) :J%@ W |z4)

|z-)= l(oj i |z—>*:<z—|:\/%(01). (5.12.14)

<Z+|:\E(l 0), (5.12.13)

1

Using the spin tensor (5.12.10) and the spinors (5.12.13), let us define the 4-vector of the iso-

2
T : 1 }
1——7+—2—rsm6‘ —_— —ir
ror ror
+

(s=)= 2 o 1(1} (5.12.15)

1 410
—_——+ir ]/‘7 rz .
v 1——++— +rsind
-+ roor
roor

spin of the a-subcont
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1
o 0 B o
1—l+* O 1_i7+72
ron ror . .
1 Iy 1 1 1 0 —irY1) 1 —rsid 0 Y1
=—(1 0 +-(1 0 +~(1 0 +—( .
4 0 5 0/ 4 1 4 ir 0\0 0 rsind)\0
ror
1-Z+— -
r+r62 R r: 0
ron

with components

1 0
r "62 l 2
s =11 o LY L L (5.12.16)
4 0) 4 ror
0 AL
r 7"62
1
O B 2
e
1 o 1
s9==(1 0 -0, (5.12.17)
4 4 1 0
A0
ror
s La o © T2 o, (5.12.18)
4° \ir 0 )0
—rsind 0 Y1
goLq g TS0 o (5.12.19)
74 0 rsind\0) 2

Similarly, the isospin of the b-subcont [i.e. metric (5.11.2)] is determined by the 4-vector
2
2" g 1,
ror / ror
+—— > =
r 125

(0} = \E 01 \E @: (5.12.20)

1 .
———tir roor .
root 1+-L —— +rsind
I+t -— ror
ror
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2 0 N 1 >
1'|'ﬁ—};2 0 1+ﬁ_£
ro ro . .
1 0) 1 0) 1 0 —irYO) 1 -rsid 0 YO
=—(01 +-(0 1 +-(0 1) . +-(0 1 ,
4 1) 4 1) 4 ir 0 \1) 4 0 rsindfl
0 - 1
1+7—72 2 0
ror 147"
ror
with components
2
I r
1_7 0
1 s 0 1 ” }"2
sP==(0 1 ) (5.12.21)
4 0 p— 1 4 ror
1+t ——
ror
0 1
n_r
1 "%
s =—(0 1 -0, (5.12.22)
4 1 1
B 2
1+ﬁ—% 0
ror
1 0 —iryo
s§P ==(0 1)(ir oJ{JZ : (5.12.23)
—rsind 0 YO
s =L 1 7 , _Lsing. (5.12.24)
74 0 rsind\1) 4

spinors (5.12.14)

The 4-vector of the anti-isospin of a c-subcont [i.e., the metric (5.11.3)] can be defined using

(s7)= \E(l 0

. 1 )
rsind — =—ir
_h_r
r 1"62
+ir rop? )
2 1-—L—— +rsinf
ror

(5.12.25)
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AE 5
2 2
1 T 1 1 Ty 1 (0 <Y1y 1, (-
=—(1 0 +~(1 0 +~(1 0) . +-(1 0
4 0) 4 4 ir 00/ 4
o |nr —
roi nr 0
ror
with components
oy
I r N 1
s70==(1 0 ==
4 0) 4
0 n_r
r 1”62
1
0 —
n_r
2
r o
o _1 e
s9=—(1 0 =
4 0
R
5 0
o

o 1 —rsind 0 1 1 .
s ¢ :,(1 0 . =—rsind.
74 0 rsind\0) 2

nor

2 b
rr

(5.12.26)

(5.12.27)

(5.12.28)

(5.12.29)

We can define the 4-vector of the anti-isospin of the d-subcont [e.g. metrics (5.11.4)] in a simi-

lar way
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r,or . 1 .
/1+—7+—2—rsm6’ i
ror r,or

I+—+— =

o\ _ L " T 1(0)_ 5.12.30
(st ’>_\/;(0 1 4@_ ( )

1 .
———— tir o2
ror? I+~ +— +rsind
I+—+— ror

ror
2 0 N 1 >
1240 0 147"
T ro . .
1 0 1 0) 1 0 —irY0) 1 -rsind 0 YO
=01 +-(0 1 +=(0 1 +-(0 ,
4 0 : 1 | 1 ir 0 A1) 4 0 rsind\l
1424 - > 0
" 174"
ro
with components
2
1+ﬁ+% 0
r }’%’ 0 3
s =L le AT (5.12.31)
t 2
4 0 — 1) 4\ r 7
I+1+—
ror
0 - ! -
1+ﬁ+r—2
ror 0
570 :1(0 1 -0, (5.12.32)
7 4 1 1
2
0
1+ﬁ+r—2
ror
1 0 —-irYO
p =01 =0, 5.12.33
% 4( )(ir OIJ ( )
—rsind 0 YO
sCD =1(0 1 _ _Lsing. (5.12.34)
74 0 rsind\1) 2

We set the components of the general vector of the isospin of the subcont of the core of the

«electron» equal to
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: 1 ? ? ? N4
s =\/sf“’)2 +sf"’)2 +st(%)2 +S;(_d)2 _t (1—ﬁ +r—2)+(l+r—7 —%)Jr(l—ﬁ —%)+(l+ﬁ +r—2 =£ =,
4 ror ror 7 ror 4 2
O _
s, =0, (5.12.35)
§O =
g VY

~ 2 2 > 2 1 X : : : |
s():\/s;”) +sff’) +sff) +sfpd) :Z\/rz sitt @+ sirt @+r7 sirt 9+r2s1n2925rsm9.

There is another type of isotopic rotation, which is formally defined by complex spinors

y+>:\/£@ no|ye) =(r+|= %(z’O) (5.12.36)

such that

v -)= im n |Y—>*:<Y—|:\/§(Oi) (5.12.37)

1

such that

(Y -|¥ -) :i(oz)m :-%, (Y -|Y +) =i(oz')((i)j =0.

1

We substitute into the expressions (5.12.15) through (5.12.34) the complex spinors (5.12.36)
through (5.12.37) in place of the spinors (5.12.13) through (5.12.14). As a result, we obtain opposite
values for the components of the 4-vectors of the isospins of the a-subcont and the h-subcont, as well
as those of the anti-isospin of the c-subcont and the d-subcont. Let us show this by the example of the

isospin properties of the a-subcont

2
(T R
rer / ror
_7+72 .
<S<a>>:\F(i 0 T 1) _ (5.12.38)
4 4\0

1 .
———tir roor .
ror 1-—L+— +rsind
—*+72 r 7"6
ror
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2 0 Bl ,,2
1245 o =740
ror . ror . N/ : .
0 - rsid 0
i o el of RS Dl M P e
4 0 4 0) 4 Nir 0 )0 4 0 rsind)0
0 [ n.r R
_7+7
r ’%2 1_ﬁ+é 0
ron

It is clear from this that, in this case, the components of the 4-vector of the isospin for the

a-subcont have opposite values to those of their respective components in (5.12.16) through (5.12.19)

2
_hr
r 1’2’2 0 . )
o _ 1. N_ 1] 5 (5.12.39)
$o=Yi o s, 12,
4 0 4 ror
0 5 r
r 7’62
0 1
n_r
r 7"62 1
so=L1 o szo, (5.12.40)
|
n_r 0
r 7’62
1 0 —-iryl
Ca—2(1 0 =0, 5.12.41
K 4( )[ir 0 IOJ ( )
—rsind 0 ]
PRSI =L sing. (5.12.42)
74 0 rsind\0) 2

Therefore, the components of the general vector of the isospin of such an «electron» core

should also be assumed to be opposite

2 2 2 2
5O =—\/sf*"2 57 g7 g _1 (1—ﬁ+r—2)+(l+ﬁ—r—2)+(1—ﬁ—r—z)+(1+ﬁ+r—2 =—E=—1,
4 ror ror ror ror 4 2
O
s, =0, (5.12.43)
sg): )

. 2 2 2 2 1 5 : . : |
O :_\/Sq("ﬂ) +s§f’) +s;f) +sf:0 :——\/ r* Sitt O+77 sitf O+77 sirt O+ sirt 0:—5 rsind.

The results (5.12.35) and (5.12. 43) appear analogous to the spin quantum number of classical

quantum mechanics s = +/5.
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Let's sum up what we have learned so far:

1. In this section we give only initial information on the isospin properties of diagonal quad-
ratic forms. In view of what was said in §§ /.14 through 1.15, the research data can be con-
tinued until many non-trivial results are obtained.

2. From the assumption that within the core of the «electron» at rest two intra-vacuum layers
[for example, (5.11.1) and (5.11.3)] have isospins with the same direction, whereas the oth-
er two layers [e.g. (5.11.2) and (5.11.4)] have isospins with the opposite direction, the con-
clusion is reached that the given isospins, on the average, completely compensate each oth-

er’s representations. However the general isospin of the core of the «electron» is analogous

to the electron spin quantum number in classical quantum mechanics.

Fig. 5.12.1 Fractal illustration of the intercrossing isospin processes occurring inside
the core of a spherical vacuum formation

3. Investigations of the isospin properties of the metrics (5.8.16) through (5.8.19) describing
the core of the "positron" lead to similar results. For example, the 4-vector of the isospin of

the a- antisubcont can be specified using the spin tensor obtained from the metric (5.8.16):

2
- }1—”—7+r—2 +rsin@ ;+ir
rorg v
1 I"+7"72 1 1
6
(s = \f (o 1(n_ (5.12.44)
4 4\0

1 .
—ir vt
PR - [I-—L+— —rsinf
7 2
_*+72 r Ty
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1 1 1) 1 0 iryl 1 rsid 0 1
=—(10 +=(1 0f +—(1 0 +=(1 0 ,
4 0 . 0) 4 1 0/ 4 —ir 0\0) 4 0 —rsid)\0

ror
— 1_i7+72 > 0
r r6 1_ﬁ +L
2
roy

and the components of the general vector of the isospin of such a "positron’s" core are also equal to

2 2 2 2
St(+) :\/St(m)z +St(+b)2 +S,(+C)2 +St(+d)2 :1 (l—ﬁ +r—2)+(l+ﬁ—r—2)+(l—ﬁ _r_2)+(1+ﬁ +l’_2) :ﬂ :l ,
4 ror ror ror ror 4 2
(GO
s, =0, (5.12.45)
s =0,

S;f) z\/ S(Ef“)z +S((;b)2 +sf;“)2 +s;j”’)2 :i\/ 2 sitt @+ sitt @+ it @+ sin’ @ :%rsinﬁ‘
4. Investigations of the isospin properties of the cores of the «electron» and of the «positrony
at the level of the 2°-An ,-vacuum region can, for example, by using metrics (5.11.35), lead

to much more complicated but harmonious results.
5. Ifin equations (5.11.1) through (5.12.45) instead of the two radii 76, 77 substitute any other
two radii from the hierarchy of radii (2.6.20), for example, r2, 73 or r1,7rs or r4, re, etc., we

obtain similar metric-dynamic models of core and their isospins respectively naked: «plan-

ety, «galaxy», «stars», «biological cells», etc. (see Definition Ne 9.2.1).

Fig. 5.12.2. The text of the TORAH contains 5845 verses. At the time of writing these lines in the Jewish calendar
5779 year from the birth of Adam HaRishon (the First Man). Our planet is left to do 5845 — 5779 = 66 revolu-
tions around its axis until Gadol Erev Shabbat (the evening before the Great Sabbath)
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5.13 Probabilistic description

Because of many external and internal influ-
ences the core of the «electron» (like the core of any
other naked stable vacuum formation) is constantly
fluctuating and distorted like a spherical jelly (Figures
5.10.5 and 5.13.1). At the same time, the particelle (in-
ner nucleolus) inside the «electron’s» core (Figure
5.13.1 or Figure 3.1) constantly wanders chaotically in
the vicinity of the center of this vacuum formation.

Chaotic motion of the particelle (internal nucleo-
lus) is investigated in detail in Chapters 3 and 4. In this
paragraph let's consider one of variants of the descrip-
tion of fluctuations of subcont in the «electron’s» core
and antisubcont inside the core of the "positron".

As an example of changeable distortion of the
intra-vacuum layers, consider the description of fluctua-

tions an a-subcont (5.11.1)
dr’

\.‘_‘_*_"’i? i } /;
\§

=

Fig. 5.13.1. The core of any naked stable vacuum
formation (including the "electron’s" core) con-
stantly varies and is curved, and the particelle (in-
ner nucleolus) constantly wanders chaotically in
the vicinity of the center of this vacuum formation

2
ds-? :(l—ri+r—2Jc2dt2——Z—rz(d¢92+sin29d(p2) — a-subcont, (5.13.1)
r 7"6 ( }’7 7")
1

2
U

Such fluctuations of the other three intra-vacuum layers with metrics (5.11.2) through (5.11.4)

are described similarly.

Recall that the metric (5.13.1) can be represented as the sum of seven sub-metrics (5.11.35)

with signature (5.11.33):

2 2
ds(‘“)z=(1—ﬁ+%jczdt2+L2+r2d02+rzsin2¢9d(02— —ar-subcont  (5.13.2)
roor ( ror J
l-——+—
r I
v dr’
—|1-T+ 5 |Pdl - ————<—r’d0’ +r’sin’ 0dy’> + —az-subcont  (5.13.3)
P L
oo
r 7’2 2 1.2 drz 2 112 2 .2 2
1-a e I 2a6° 1 v sin® 0dgt—  —avsuboont  (5.134)
r T ( r, r j
l-—+—
ror
— as-subcont (5.13.5)

2 2
_(1_r_7+r—2jc2dt2 _d;zﬂfza’&2 —r’sin® @dep* +
o ( KT ]

r rs
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2 2
+(l—r—7+r—2Jc2dt2 +ﬁr2d92 —r’sin>@dgp® —  —as-subcont (5.13.6)

r e _i L
oo
o dr?
_ 1__7+_ c2dt? +—2—r2d¢92—rzsin29d(p2 +  —ac-subcont (5.13.7)
D
r 1
o dr?
+ 1=L+ 5 |Pdl - ————<+77d0” =’ sin’ 0dg’ - — ar-subcont. (5.13.8)
ror roor
r g

Consider only one of the seven summands in this expression, for example, (5.13.5) with signa-

ture (— — + —) (the other terms are described similarly).

(——+-

As was shown in § 5.12, the sub-metric (5.13.5) (species s " =—)7 —3 +)5 —)2 ) can be rep-

resented in the form of one of the determinants of » A£(77+7) , which are matrices of the form (5.12.8):

Yoty Yty

Yo+iy, J’l"'yz) (_J’o"‘iys _y1+y2J (yo+iy3 _y1+y2J
Nty Yoty

Yty Yoty Wty Yo iy YitY, —Yotin

Nt _y0+iY3J (_y1+y2 Yo +iy;

YVo+iys =+, —Voti; =yt Vo +iy; Ity Yoty ity

Yoty st ),
ity — Yoty

Vot Vit ),
-ty Yoty

Vst Yo Ty, Y3ty —yotiy

Vit Yy, — Yoty
Yoty —yit+y,

ty _yo+iy3J +» yo"'iy}J

( Yo iy _y3+sz (yo+iy1 — Y3t

[ Y3+, Yo +1y, J

Y3+, _yo‘H.le £_y3+y2 Yoty
Vot =yt

Yoty Y3+, Yot Y3ty

(y0+y2 _y1+iy3] (J’O‘FJ/z )/1‘”.)6} (_J/o'*'yz _y1+iy3j (_)’0"')/2 )’1+iy3j
Vit =Yty Nt =Yyt Yy, Yot Y, -ty Yoty

(5.13.9)
where
roort dr .
Yo = (1——7+—2]0dl, V, m————, Y, :rde’ Vs :rslnedgo. (51310)
rer v
r Ve
If we assume that each of the A4( ) _matrices of (5.13.9) is implemented with some probabil-
ity ¢’ (¢) (which may vary with time #), the middle A( ) _matrix can be represented in the form

AT = AT+ O+ OA4TTT ()4 (5.13.11)
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or A§77+7) :icf(t)Ai(**Jr*) (5.13.12)
i=1

where =1, (5.13.13)
i=1
In the simplest case, when all ¢’= 1/n, the expression (5.13.12) takes the form
AT = lZAj(”*’). (5.13.14)
nig

Part of the characteristics of the considered random processes can be obtained on the basis of

the spin tensor analysis

ST = (AT ) + ([T ) + (AT )+

A Ny,), (5.13.15)

where «bray» and «ket» vectors have the form

(i |=(c0,0)=2((1,0) |w,.>=(cf§>]=c,.a>(;j, (5.3.16)
and / or
(W] =i 0,0)=c@)i,0) |, =[ic§t))=ci<r)[éj. (5.13.17)

Similar descriptions can be formulated for the chaotic fluctuations
of all sub-layers (5.13.2) through (5.13.8) and the layers (5.11.2) through
(5.11.4) of the subcont in the «electron’s» core.

Use of metrics (5.8.16) through (5.8.19) and (5.11.36) can be de-
scribed by fluctuations of the layers and sub-layers of antisubcont inside the

core of the «positrony.

The probabilistic description of intra-vacuum fluctuations should be
the subject of a separate study, which would be beyond the scope of this work. However, we note that
all the metrics and linear forms with which the Algebra of Signatures operates in the present study are
only the result of averaging extremely complex and intricate overlays of intra-vacuum layers, sub-
layers and sub-layers ... and plexuses of the subcont’s and / or antisubcont’s flows (currents) (Fig.

5.13.2 and 5.13.3).
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Fig. 5.13.2. Fractal illustration of the vacuum fluctuations




Fig. 5.13.3. Fractal illustration of various aspects of the complex and intricate intertwining of the
intra-vacuum layers and weaves of the subcont’s or antisubcont’s flows (currents)




5.14 The rotation core of the «electron» and «positron»

The core of any naked stable vacuum formation, including the core of the «electron» and «posi-
trony, rotates relative to an outside observer (i.e. an observer located in its outer shell); see Figures

5.11.5 and 5.14.1.

P

Fig. 5.14.1. Rotation of the «electron’s» core has two components:
1) rotation around the instantaneous axis, and 2) the chaotic change of the direction of its axis of rotation

However, as noted in § 2.3, for an observer located inside the rotating core of any vacuum
formation, this rotation can be practically not manifested. In this case, the condition (2.3.74) should be

satisfied; in particular

Y, =0,
Y, +@,=0 wm ® -0 (5.14.1)
uv
where
Y, =K K, +K, KP+K, K“+K K" g (KK +K,, K*) (5.142)
uv L ,uaﬁ[<? oy, af Zg,uv A A s LT
is the Cartan-Schouten tensor (2.3.5);
i s P" i i s 5.143
‘Djm:Z{V[Q/\mﬁQUQAM‘gg 8 <V[,»<Dp\n]+<1>x@%]>} ( )

is the Vaytsenbek -Vitali - Shipov tensor (2.3.8).

The rotation core of the naked stable vacuum formation (in particular, the «electron’s» core) is
an extremely complex phenomenon that requires a separate extensive research. In this work we note
only possible directions of this research on the example of a qualitative review of core rotation of the

«electron» (or «positrony).
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First of all, note that, as mentioned in § 5.11, each
point of the periphery of the «electron’s» core has to move
with a linear velocity close to the speed of light
v = ¢ [see (5.11.22) through (5.11.25)]. This is the condi-
tion for the existence of a subcont on the border between
the core and the outer shell of «electron» (Figures 5.8.1 and
5.14.1). Such rotational movement of the periphery of the
core can be described as follows.

If the surface of the «electron’s» core rotates like a
solid sphere, the velocity of points lying on its equator
ve),would be maximal, i.e. close to the speed of light
(ve"?) = ¢), and the velocity of other points on this area

would be significantly less (v < ¢) (Figure 5.14.2).

Fig. 5.14.2. The linear velocity of points
on a rotating sphere

The speed of non-equatorial points on the surface of the core would also be close to the speed

of light, as they must still participate in the surface rotational movements (cyclone and/or anticyclone,

see Figure 5.14.3), with additional speed v., so that v© + v.O = c.

Fig. 5.14.3. Cyclones

---- * and anticyclonesa at the surface of the rotating core of the vacuum formation

(in particular the «electron’s» core), like circulation of air on the surface of a planet
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Fig. 5.14.4. Fractal illustration of different zones on the surface of the rotating core of the naked stable
vacuum formation (in particular, the core of the «electron»)

On the surface of the considered sphere (Figure 5.14.2, 5.14.4) still remain two points at the
"North" and "South" poles which do not participate in the rotational motion. But they are due to the
boundary conditions; these points also need to move with a speed close to the speed of light. There-
fore, the axis of rotation of the «electron’s» core passing through the pole should move with the speed

of light in the direction perpendicular to the equator (Figure 5.14.1 and 5.14.3).
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The result of superposition of several of the above reasons, the points that are in the peripheral
layer of the «electron’s» core should participate in an extremely complex perfunctory movement. Thus
the instantaneous axis of rotation of the whole core as a whole should move along almost a chaotic tra-

jectory (Figures 5.14.5 and 5.14.6).

t Ip) B3

Fig. 5.14.5. The chaotic change of direction of the axis of the rotation core of the vacuum formation
(in particular the «electron’s» core) over time relative to an outside observer

Photograph of the Sun with unit Trace The sun in the infrared spectrum

Fig. 5.14.6. On the surface of the Sun is seen many whirling currents (spicules), moving at a speed close to 50 000 km/h.
It is possible that movements on the surface of the core of any naked stable vacuum formation (including at the periphery
of the «electron’s» core) are similar to vortex intra-vacuum currents, but with others speeds
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Initially it is unknown which way to rotate the core of the «electron», but we know that these
opportunities are only two: "clockwise" and "counterclockwise", and the probability of any of these
directions of rotations is equal to Y%.

Because of the chaotic precession of the axis of rotation of the core of the «electrony, for any
given direction in a forward direction, it coincides with this direction part of the time, and the other
equal part of the time this axis is opposite to it. Therefore, the core of a free resting «electron» has its
own moment of rotation for any direction, on average, equal to zero.

Different longitudinal and transverse layers of the «electron’s» core are moving with a different
velocities (5.11.22) through (5.11.25) depending on the distance from the center ». At the periphery of
the core, all four of the cross-layers of the subcont, move on average almost exclusively at the surface
of a sphere with a radius rs; the layers out of the four intertwined layers of subcont which are closer to
the particelle (inner nucleolus) become more and more radial (Figures 5.11.5 and 5.14.1). However,
near the inner nucleolus their velocities are again primarily directed along a sphere with a radius 77

(Figures 5.14.7 and 5.14.8).

Fig. 5.14.7. Near the particelle (inner nucleolus) with a radius 7, subcont speed again increases,
and increases its tangential component
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Fig. 5.14.8. On the periphery of the «electron’s» core with a radius 7 and near its particelle (inner nucleolus) with
a radius 77 the speed of the subcont on average has a tangential component, and between the periphery of the «electron’s»
core and rakya of its internal nucleolus is dominated by the radial component of velocity of the subcont.

Therefore, the projection of the velocities of transverse layers of subcont on the surface of
spheres with different radii 76 > > r7 are different. Because of this, longitudinal layers of the «elec-

tron’s» core (Figure 5.14.9) are different.
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Fig. 5.14.9. Fractal illustration of a state longitudinal layers inside the core of the «electron»

Let's consider some aspects regarding the complex rota-
tion process of subcont and antisubcont in the core of the vacu-
um formations, in particular in the «electron’s» core and the
«position’sy core.

Let the point M be located at a distance r from the cen-

ter of the core of the «electron» (r6¢>r > r7) as it moves around
the instantaneous axis of rotation with a linear velocity (Figure

5.14.10) [48]

vV = OXr, (5.14.4)

where Fig. 5.14.10. The definition of
angular speed [48]

o = e do/dt (5.14.5)

is the angular velocity of rotation of the core (e is a unit vector directed along the instantaneous axis of
rotation).

Let the supporting system of reference x1, x2, x3 (Figure 5.14.10), remains stationary, and the
system y1, )2, y3 chaotically precesses together with the instantaneous axis of rotation of the core.

The coordinate axes of the reference and shifting reference systems in this case are intercon-
nected by a system of three linear equations

Va = Por(t) x1+ Pa2(t) x2+ Pa3(t) x3, (5.14.6)

where fak(?) (o,k =1,2,3) are the direction cosines, which are random functions of time.
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Referring to equations (5.14.6) [48], we differentiate

X X, Xy
%:zdﬂ;};(ﬂ x,=ot)xy,=| o) o) o) | (5.14.7)
h a0) Ba®) Ba0)

where wq () is the instantaneous projection of the angular velocity vector w(¢) on the reference axis of

the reference system x1, x2, x3 at time z.
Equating coefficients of the unit vectors xk, from equation (5.14.7), we obtain the system of

equations for speeds of change of the direction cosines

dfaildt = Pa1*= w23 — w3fa2, (5.14.8)

dfaaldt = fap*= @3fa1 — w103, (5.14.9)

dfas/dt = Pa3® = @1fap— w2fal, (5.14.10)
which can be written in matrix form [48]

p) (0 o oA

B =] 0 - |p,| (5.14.11)

ﬂ;s — 0, 2 0 ﬂa3
Combining the three matrix equations into one will get a matrix of kinematic Poisson equation [48]

B B B 0 — (t ) @, (t ) By B By
By B By |= w%(t) 0 -0 (t) By Bn Bul (5.14.12)
Bs By By ) (t ) @, (t ) 0 Bs Pu Py

which determines the displacement of a point M on a sphere with radius .

According to (5.11.22) through (5.11.25), the velocity of intra-vacuum layers in the core of the

«electrony relative to the observer inside the core equals

vil(r) = (= rilr+ r*lre?)"? - velocity of the a-subcont; (5.14.13)
vilh(r) = c(ri/r—lre*)"*  — velocity of the b-subcont; (5.14.14)
vi(r) = c(— rlr—r*lre?)">  —velocity of the c-subcont; (5.14.15)
vil(r) = c(rilr+ r*lré)'? - velocity of the d-subcont. (5.14.16)

However, relative to the observer outside the rotating core of the «electron», these speeds are

decomposed into radial v "(r) and tangential components of v.: ()

V() = v CO(r) + v COr); (5.14.17)
Vi) = v COF) + v O r); (5.14.18)
Vi) = v COF) + v COr); (5.14.19)
VN F) = v Cr) + v C(). (5.14.20)

whereby the tangential velocity component of each intra-vacuum layer can be estimated by the expres-
sion
Ve (r) = @(f)xsT™ (5.14.21)

where s is the dimensional vector of isospin of the m-th intra-vacuum layer.
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For example, the vector of the tangential speed of subcont inside the «electron’s» core approx-

imately equals
vie C(r) = o (£) s, (5.14.22)

where s is the dimensional vector and isospin of the a-subcont with components (5.12.17) through
(5.12.19):

From the expression (5.14.19), taking into account the component (5.14.23), we estimate the
module of the instantaneous value of the tangential speed of subcont between the two abysses (rakyas)
of the «electron’s» core (r6>r > r7)

Vi CO(r) = Var sind [01(£)* + w2(2)*] (5.14.23)

provided that on the periphery of the core with a radius s

[vie C(re)| = V4 1 sin O [wi1(1)* + 02(£)*]" =, (5.14.24)

and in the area of abyss (rakya) particelle (inner nucleolus) with a radius 7, the following condition is
fulfilled
v CO(r)| = Vo 17 sin O [wi(1)? + 02(£)*]=c. (5.14.25)

From the expression (5.14.17) it follows that the radial component of a-subcont velocity inside

the «electron’s» core approximately equals

Vir Cr) 2 v CN(r) = v Cr) = (= mlr+ P re?) 2 = Var sin 0 [1(0)*+ 02(0)*]*. (5.14.26)

On the basis of analysis of the expressions (5.14.18) through (5.14.20), the tangential and radial
components of: h-subcont velocity, c-subcont velocity and d-subcont velocity in the «electron’s» core)
can be obtained.

This is similar to the described rotational processes inside the core of the "proton" when you
use metric (5.8.16) through (5.8.20) with the opposite signature (— —— +).

In all the equations of this paragraph, if, instead of the radii 76, 77, one substitutes any other pair
of radii of the hierarchy (2.6.20) (for example, 74, r2 or re, r9 or rs, r7, etc.), then one gets the descrip-
tion of rotational processes within any other naked vacuum formation, for example, the core of the na-

ked “galaxy", the core of the naked «planet», the nuclei of naked biological «cells», etc.
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Fig. 5.14.11. Fractal illustration of a complex multi-layered rotational processes,
occurring in the core of the naked stable vacuum formations (in particular in the «electron’s» core)

At this point we note again that no complete solutions to the assigned tasks exist. In this paper
are indicated only ways of describing the rotation of the various layers of cores of the naked stable

vacuum formations (in particular the cores of the «electron» and «positrony).
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5.15 Rakya (abyss) around the cores of «electrons» and «positrons»
Let’s return to the consideration of metrics (2.6.9) through (2.6.12) with signature (+ — — —).

Let's write down the given metrics taking into account (2.6.5) through (2.6.8)

_ r4+rn+rntr+rtr+r+rn+n+r 1 1 1 1 1 1 1 1 1 1
dsf 12 _ a0t T Tt T T T8 T 10+(2+2+2+2+2+2+2+2+2+2 A letds?
r no o n o n L rn r n kK L N
-1
n+rntrntr ettt +ntr 1 1 1 1 1 1 1 1 1 1
— 1— ! 2 3 4 3 6 7 8 o ]0+ 7+7+7+7+7+7+7+7+7+7 1"2 drz—
r n n o on o n K n LKk I

- r2<d492 +sin’ €d¢2),

dsO? = 1+r1-i—r2+r3+r4-i—rs+r6+r7+r8+r9+r10 1
sy " = p -5

-1
_{1+I’1+Vz+l”3+r4+r5+r6+r7+rg+r9+rw _(12+12+12+12+12+12+12+12+12+12Jr2} dar’ —
r nh n non I n I I h
—(d6” +sin*0dg?),
(5.15.2)
dsg_)zz 1_”1+”2+”3+”4+r5+r6+r7+”8+”9+”10_ %+%+%+%+%+%+%+%+%+% r? belde?
4 h n i 5 5 Ko KL h
-1
3 1_rl+r2+r3+r4+r5+r6+r7+r8+r9+r10_ %+%+%+%+%+%+%+%+%+% 2L
r nh n non 5 Ko n K Iy I
—r*(d6* +sin” 0dg?),
(5.15.3)
dsﬁ”:{Hrl+r2+’3+”4+r5+”6+r7+'3‘+"9+r'°J{12+12+12+12+12+12+12+12+12+Ejrz}czdzz
r h nh 5 n I nn L I h
-1
R S S R e i Sl i, +(12+12+12+12+12+12+12+12+12+12Jr2 -
r h n n I Kk L LK KL kK
—r2(d92 +sin’ Hd(p2),
(5.15.4)
ds$? =c*dr* —dr® —r*(d6* +sin® 0dg?), (5.15.5)
where according to hierarchy (2.6.20):
ri~3.410cm — characteristic radius of the closed «Universe»; (5.15.52)

r2~1.2-10¥ cm — characteristic radius of the «metagalaxy» core;
r3~4108cm  — characteristic radius of the «galaxy» core;
ra~1.4'103cm  — characteristic radius of the «star’sy» (or «planet’s») core;
rs~4.9:10° cm — characteristic radius of the biological «cell»;
r6~1.7-10"3 cm — characteristic radius of the «elementary particle’s» core;
r7~5.8'102*cm — characteristic radius of the «protoquark’s» core;

rs~2.1'10*cm — characteristic radius of the «plankton’s » core;
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ro~710%cm  — characteristic radius of the «phytoplankton’s » core;
r10 ~2.4:10°° cm

We rewrite the metric (5.15.1) through (5.15.5)

— characteristic radius of the «instanton’s » core.

r S PR

-1
2 2 2 2 2 2
ds :{1_W+ L }czdﬁ _{1_W+ L } dr* —r*(d6” +sin® 0dg?) (5.15.6)

r S PR

-1
2 2 2 2 2 2
ds? = { LA +r6+rL A }czdﬁ _{HW_ r+r+r} dr 1 (d6* +sin® 0dg?) (5.15.7)

2T
oy

222
2 _ ”B+"6+"L r.r 212 ptrt+n
ds§ 1- —2+—+— dr —{1-=-—2°%=~
o K r

2 2 2
Fy+r T, ror Fy 47+
dsi? =1+ L —2+ —+— |l 1+
roron r

dsO? = Pdi* —dr® —r*(d6 +sin® 0dg?).

where T =F+1+1n+r+1;

n=nh+nR+05+0;

P+ T rer.r T e I "
I—M'F _2+_2+_2 = __L+_2 — 1+_6__2 + _B
r A A ror ror r
oot 2 2
L R AL U U/ I O Y PO
2 2 2 2 2
r A A roor ror r
2 2 2
rpt+r+r rr r 7 r’ 7 r’ 7y
1 S+t === || I+ =+ |+
r oo K roor ron r

metrics (5.15.6) through (5.15.10) can take the form of

—(rz o +”2]} ar? ~r(de? +sirt 0dg’) (5 15 g)

[r i +FJ} dr —rz(dé?2 +sin’ Odg’ ) (5.15.9)

(5.15.10)

(5.15.11)

(5.15.12)

(5.15.13)

(5.15.14)

(5.15.15)

(5.15.16)

(5.15.17)

(5.15.18)
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2 2 2 2 2 2\
ds? =4 1= e 1 g - e - L g
s { el (e L e e o U (5.15.19)

—12(d6* +sirt 6dg’)
2 2 72 2 2 NE
ds™? =11 n_r _1_5 r 1 s I 2df =41 n_ro 1k 1 s I ar -
o G (e A ] i s e A (o Rt
—1*(d6 +sirt Odg7)
2 2 2 2 2 o\
TS PRl N O Y POl PP O ol N Y Y PO b R
: { , rgj (*ﬁrf N R g M L (5.15.21)
—?de? +sirt 0de?)
2 2 2 2 2 7 -
Pl PRSI N RSN PR LA |9%/77 | PR/ AICA L RO I L/ R | G
‘ {* N r ) TR [N Ll ) [ (5.15.22)
—1?(de? +sirt Odg?)
dsO? = Pdt* —dr’ -1 (d67 +sin® 0dg?). (5.15.23)

In the vicinity of the «electron’s» core with a radius of about rs ~1,7-107"* cm {see hierarchy
(5.15.5 a)} all third terms in the metric (5.15.19) through (5.15.22) (for example, 1 — rz/r + r*/r*) can
be considered as a permanent (constant) background. Since in the range of lengths from 75~ 4,9-107

cm to 77~ 5,8:1072* cm they practically do not change

7/'2 2 p r2 p r2
1——+—2 X const 1——+—2 ~const, |1--L2+— |xconst, |1-—++— |=const, (5.15.23a)
r r r

y ry ry r ry

because in the area of the «electron’s» core: rs/r6 ~ 10> ~o0 and re*/ry> ~ 1034~
In addition, if you average all the third terms (15.23 a) in the metrics of the species (5.15.19)
through (5.15.20) with signatures (+ — — —) and (— + + +), they fully compensate for each other ac-

cording to the vacuum condition.

Taking into account the expressions (5.15.23 a), the stable "convex" formation (which we call

«electrony), existing on a constant background, can be more accurately described by the following

multilayer metric-dynamic model:
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«Electron»

"Convex" multilayer vacuum formation with signature

(+-=-)

consisting of:

The outer shell of the «electron»
in the interval [, 7] (Figure 8.1 or 15.1)

2 2
dst?% = (1 ey r—zjczdzz - LZ - rz(dﬁz +sin’ Hd(pz) — a-subcont,
r r, 1
[1 -t
ron
oo’ dr’
ds{ P =1+ —— |c’dt’ - ——~ r (dl92 +sin’ Gdgoz) — b-subcont,
roor v, r
(1 -
ron
r,oort dr?
ds§+"_)2 1= _ — cldi? — - 72 (d92 +sin? 9d¢2) — c-subcont,
roor ( A j
T 2
ron
r,oort dr?
dsy" " =| 1+ 2+ |Pdl’ - ———< =7 (ale2 +sin’@dg’) — d-subcont;
roor rg o r
(1 + =+ 2]
roor
The core of the «electron»
in the interval [76, 710] (Figure 5.8.1 or 5.15.1)
2
ds'"— % = [1 oy r—chzdt — —r d02 +sin’Odo ) — a-subcont,
2

2
dst—? =[14 2T - r*(d6* +sin> 0dg?) — b-subcont,
roor (“_ ror

r 183
2 2
ds{? = (1 L r—chzdﬁ - LZ -~ rz(dﬁz +sin’ Hd(pz) — c-subcont,
r Ts _ i _ r
[ r 1’62
2 2
ds\ % = (1 + g r—zjcza’t2 - Lz -7 (d492 +sin’ Hd(oz) — d-subcont;
r 7"6 ( ry r ]
I+—=+—
r F6

The scope of the «electron»
in the interval [0, o]

dsC = —dr? — P (dF +sin’ 0d?),

where =1ttt

l_l+l+1+l+l
I L R R L
oh L Ty TS

(5.15.24)

(5.15.25)

(5.15.26)

(5.15.27)

(5.15.28)

(5.15.29)

(5.15.30)

(5.15.31)

(5.15.32)

(5.15.33)
(5.15.34)

(5.15.35)
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Fig. 5.15.1. Visualized metric-dynamic model of stable
multilayer vacuum formation (in particular, «electron» or
«positrony), consisting of: outer shell, abyss (rakya), core

and internal particelle, and its fractal illustration

Performing a similar action with the met-
ric (2.6.14) through (2.6.18), we get the follow-
ing refinement of the metric-dynamic model of a

«positron» (i.e. the model is an exact negative

copy of an «electron»):

«Positrony» (5.15.36)
"Concave" multilayer vacuum formation with signature
(—+++)
consisting of:

The outer shell of the «positron»

in the interval [ry, 6] (Figure 5.8.1 or 5.15.1)
2

2
dst—? = 1- T | r_zjczdt2 n LZ n r2(d92 +sin> 9dgo2) — a-antisubcont,  (5.15.37)
r " _ VL r
( r " 7'12 j
2 2
dsi = 1+ To T g s Lz " rz(dQZ +sin? gd(pz) — b-antisubcont,  (5.15.38)
oo
2 2
dsi 2 = - _ r_z c2dt? +L2+ rz(dgz +sin? gd¢2) — c-antisubcont,  (5.15.39)
r Iy 1— 19 _ L
( r ”12}

2 2
dst? = _(1 + Ty ”_2 c2d + (L n r2(d02 +sin? 9d¢2) — d-antisubcont; (5.15.40)
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The core of the «positron»

in the interval [rg, r10] (Figure 5.8.1 or 5.15.1)
2 2
ds 2 = _(1 _ho ’"_zjcﬁdﬁ " ;2 2 (d92 +sin? 9d¢2) — a-antisubcont,  (5.15.41)
roor r,or
ror
2 2
ds\ 2 = _(1 I r—zjczdtz + Lz +72 (d92 +sin? 9d¢,2) — b-antisubcont, (5.15.42)

r I ( r r j

1 £ _ -

2

r re

2 2
dsi = 1- 11 ”_2 2di? + dr —+ r2(d92 +sin? 9d¢2) — c-antisubcont, (5.15.43)

ror (1_4_”

2

roor

(+-——)2 I"L 1’2 2 2 dl"z 2 2 ) 2 1 .
ds = 1+ L Dl + —+72(d6? +sin’0dg?) —d-antisubcont;  (5.15.44)
G (1 +1L 4 r—z

roor

The scope of the «positron»

in the interval [0, o]
dsT? =—d +dr? + 17 (d6?2 +sin’ Hd(pz), (5.15.45)

where A A R T (5.15.45a)
1 1 1 1 1 1
e e (5.15.45b)
o nh 2 3 5

For the effect of additional terms on the metric-dynamic state of the outer shell and the core of

the «electron» (or «positron»), consider the example of an a-subcont. We write the metrics (5.15.25)

and (5.15.29) subject to the equations (5.15.45a) and (5.15.45b):

— for an a-subcont in the outer shell of «electron»

2 2 2 2 2 2
. [ S T S dr ~
sy = =t St b bk (chdr - — (@6 +sin’ 0dp?).
A A S A A re roortortoror
-2+ —+—+5+5+
r-n n 5B 5L
(5.15.46)
— for an a-subcont in the «electron’s» core
(+=—)2 R hy T 2 7.2 dr’ 2 2 .2 2
ds =|]1-L-32_2_ —+— |c7dt ~—r\df° +sin" Ode
r r r r 7’6 _1”77_}"78_}’79_}"10 r
1 +—
ror r r I
(5.15.47)
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According to the hierarchy (5.15.5 a), the radii of vacuum formations differ of many times from
each other r1 >> r2>> 13 >> 4 >> s >> rg >> r7>> g >> 9 >> rio. Therefore, apart from the terms
containing the radius of the core of the «electron» 76, the greatest impact in the metric (5.15.46) are the
components of 7%/rs?, as in the metric (5.15.47), which dominate the components of 77/r in the metric.
If we exclude all other additional terms, we will return to the metric-dynamic model of the «electron»
(2.6.23) through (2.6.31).

However, at the boundary between the «electron’s» core and its outer shell (Figure 5.10.5),
which in this paper is called rakya (or abyss: Figure 5.15.1), additional terms have a tangible impact.
To explain this circumstance, let us first consider the roughest (first) approximation, on the example of
simplification of metrics (5.15.46) and (5.15.47):

- for an a-subcont in the outer shell of «electron»

2
ds;; " = (1 - r—éjcza’tz - 2(46? 4 sin? 0dg?), (5.15.48)
r 7,
1 6
=)
- for an a-subcont in the «electron’sy core
2 2
ds ™2 = (1 + r—z]czdﬁ - LZ —r*(d6% +sin*>0dy?) (5.15.49)
’s [1 + ZJ
T

In fact, the Schwarzschild radius is the radius of the spherical boundary (rakya) between the
«electron’s» core and its outer shell (Figure 5.15.2). This corresponds to the distance rs from the center
of the vacuum formation at which the zero compo-
nent goo of the metric tensor is equal to zero [34]. For
example, for metrics (5.15.48) and (5.15.49), the

Schwarzschild radius is defined by the expressions

2
gl =1-"2=0, gi)=1+"£=0, (5.15.50)
T r;

Fig. 5.15.2. Fractal illustration of the Schwarzschild
sphere separating the «electron’s» core
from its outer shell

from which follows: rss= re and rsc = irs .

Thus, at the roughest (first) approximation, a clear boundary is revealed between the «elec-
tron’s» core and its outer shell. This explicit boundary (i.e. rakya) is a sphere with radius rs (Figure
5.15.2).

With a more detailed (second) approximation, metrics (5.15.46) through (5.15.47) acquire the

following form:
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— for an a-subcont in the outer shell of the «electrony»

2 2

dsi— 2 = (1 /3 +r—2jczdt2 _Lz - rz(dHZ +sin? 0d¢2); (5.15.51)

1 2

ron

— for an a-subcont in the «electron’sy» core
2 2
ds|; ) = (1 ~2y ’”—ZJCZdzZ e rsin?0dyg?).  (5.15.52)
ror 1 T
roor

In this case, by analogy with (5.15.50), the rakya (that is, the sphere determined by the

Schwarzschild radius, hereafter denoted the “Schwarzschild horizons”) is expressed:

Lo = 1—%+§=0, gooc—1—7+§=0, (5.15.53)

which are converted to cubic equations
g =r+rr —r’r, =0, (5.15.54)
g\l =r+rlr —rlr, =0, (5.15.55)

where, according to the hierarchy (5.15.5a):
rs~4.9-103cm — characteristic radius of the biological «cell»; (5.15.56)
r6~1.7-10"13 cm — characteristic radius of the «elementary particle’s» core;
r7~5.8'10*"cm — characteristic radius of the «protoquark’s» core.
As is known, the three roots of the cubic equation of the form are determined by Cardano for-

mulas [52]

w=arpi w =L, (5.15.57)
where —3-4x Y I3 (5.15.58)
(2 (@) 5.15.59

0 [3%@. (5.15.59)

In the particular case of the equation (5.15.54):
Dk=ps=7rs’,  qk=qs=— s, (5.15.60)
and in the case of equation (5.15.55):
Pk= Pe=76",  Qk=qc=—T611. (5.15.61)
Substituting the value of (5.15.60) into (5.15.58), we have

rr P2\ (=2 Y rr P2\ (=2 Y
o=l | [Lj -I—( 5 6J . f=3lme (LJ +(#] . (5.15.62)
2 3 2 2 3 2

264




Then on the basis of (5.15.56), (5.15.57) and (5.15.62) we obtain three roots of the equation (5.15.54)

7y 2 2.1x107° +i2.1x107, (5.15.63)
3, . -3 -3 -3

rsszzz.mo 1215107 215107 —i2.1x10 A (5.15.64)
2 2
3, . -3 -3 -3

rmzz.mo 215107 216107 - 215107 (5.15.65)

2 2
Similarly, substituting values (5.15.61) in (5.15.58), we have

l"z}” 7”2 } —I"zl" ? 7'27' 7"2 ’ —l"zl" ?
e 5) (5] a5 )] s

Then on the basis of (5.15.56), (5.15.57) and (5.15.66) we obtain three roots of the equation
(5.15.55)

r, ~0.99%x107"° +i0.99%x107", (5.15.67)
0.99x107" +i0,99x107" 0.99%x107" +i0.99x107"
Tz & +i V3, (5.15.68)
2 2
0.99%x107" +i0.99x107" 0.99%x107™" +i0.99 107"
Fais ® —i V3. (5.15.69)

2 2
It is obvious that the radii (5.15.63) through (5.15.65) are associated with the splitting and ex-
pansion of rakya (i.e. the Schwarzschild horizons) around the a-subcont shell of the biological cell.
While the radii (5.15.67) through (5.15.69) are associated with the splitting and extension of the
a-subcont rakya (i.e. the Schwarzschild horizons) around the «electron’s» core.

A similar examination of all metrics (5.15.25) through (5.15.32) allows us to obtain eight cubic

equations:

I Ghoh =7+ =1l =0 (5.15.70)
I H Qoo =1 =11 =1l =0 (5.15.71)
\ ooy =1 =K1 + 51 =0 (5.15.72)
H’ g =r+rlr +1r, =0 (5.15.74)
I Goon =1 +rir —rlr =0 (5.15.75)
H H Qoosa =1 =11 =171, =0 (5.15.76)
v Sy =1 —1ir +10r, =0 (5.15.77)
H’ g ) =r+rir +rr,=0. (5.15.78)

which determine the splitting and extension (second-level representation) of the rakyas of the all four
of the a, b, ¢, d - subconts around the two cores (in this case, the biological cell and the «electron’s»

core) which are nested into each other (see Figures 5.15.3, 5.15.4).
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Fig. 5.15.3. Fractal illustration of rakya, i.e. Fig. 5.15.4. Fractal illustration of the splitting and expansion

the multi-layered boundary between the core of rakya (i.e. the Schwarzschild spherical horizons)
of the «electron» and its outer shell around the core of a stable vacuum formation
(including around the «electron’s» corey)

Taking into account the zero components goo of the metrics (5.15.25) through (5.15.32) at the

third level of representation, we have eight cubic equations:

I Goon =1 +rir —rlr =0 (5.15.79)

I H Ghon =1 —17r —rir =0 (5.15.80)
\ Soos =1 =1l +17r =0 (5.15.81)

H’ g =r+rlr +1'r, =0 (5.15.82)

I Qoou =1 +rlr =1l =0 (5.15.83)

H H Qon =1 =rir —1ir, =0 (5.15.84)
v g = =2 1k, =0 (5.15.85)

H’ g, =r+rir +rlr, =0, (5.15.86)

where, according to (5.15.34) and (5.15.35):

=1t 4t (5.15.87)
1
2
n:(iﬁiﬁiﬁiﬁizj . (5.15.88)
A S A A

These equations describe the multilayer structure of rakyas (spherical Schwarzschild horizons)
around the cores of the vacuum formations under consideration.
One needs to devote a further and more extensive investigation of the rakyas surrounding the
cores of stable vacuum formations (e.g., «electron’s» core); this may lead to a revision of our relation-
ship to the universe.
But now, a combination of the equations (5.15.79) through (5.15.86) shows that the rakya is an
extremely complex multilayered shell of the core (Figure 5.15.5, 5.15.6). The formation of the struc-

ture of each rakya is influenced by all spherical vacuum formations with the radii (5.15.5 a).
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For example, in the «electron’sy rakya there is a sub-layer connected to the Universe; another
sub-layer is connected to the galaxy; the third sub-layer is connected to the planet in which it is locat-
ed, etc.

Thus, we find that all spherical vacuum formations nested within each other (regardless of
scale) affect each other. Changing the rakya of one of them inevitably affects the rakya of all other

members of the hierarchy. This rule is consistent with the "principle of Space Responsibility".
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Fig. 5.15.5. Fractal illustrations of complex and multi-layered rakya (i.e., the shell or spherical Schwarzschild belt)
surrounding the cores of stable vacuum formation (in particular, the core of the «electrony).
Under-layers of rakya associated with the respective radii of hierarchy (5.15.5 a):
rakyas Universe, Metagalaxy, galaxy, planet, cell,..., proto-quark, instanton
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Fig. 5.15.6. Fractal illustrations of rakya - multilayer boundary between the core of a stable vacuum formation
(in particular, the core of an "electron") and its outer shell, in which there are core - satellites similar to the satellites of stars
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According to the representations of Alsigna the
skin of the living entity (Figure 5.15.7) has many interre-
lated layers, each of which has its own function, and has a
connection with the corresponding cosmic and atomic mo-
lecular structures.

In this paper, we will not go into the study of
rakyas of stable vacuum formations. But for the beginning
of the study of the effect of macro - and microscopic struc-
tures on the «electron’s» rakya, we recommend putting

forward a metric, for example, the metric (5.15.25):

Strotum cormeum —
Stratum lucidum® ——
Stratum granulosum  — U

Stratum malphigih ——
{spinosum) =

Swolum germinativam  ~
(basale) __',/’-,-__

Dormal papitee — ~— VA i\
Papillary —

Reticulasr —— j—-
MNerve endings e

Blood vessels — W8

Fig. 5.15.7. Multilayer leather cover
of the animal's body

2 2
dst 2 =[ 1= 16 4 — rl — ledr’ - dr —1?(d6” +sin” 0d )
T Sttt .
nh non n l—ri+ r
AR TR SR SRS T
’/,12 7"22 }’32 }’42 r52
(5.15.89)
as a set of five separate metrics:
2 Fea 1) a0 dr’ 2 702 L i 2 2
dsC 7 ~ 1——=+— |c*dt® - -r (d¢9 +sin 9d§0)
’ roon Foo 7’
-y
r 4

dr’

. 7 r
alsl“2 S (1—6—’2+—2chdt2 S —
’ r 7. 7
2 r
(1—6’2 +2]

r r,

dr?

QLR
r 1’3

2
I Ly r
(11.5’14r )Zz(l—£+—2]czdt2——2—
r 5 ( Tes 1 J
2
7 r
- 4
dsf*3 2~ 1—6—’+—2 cdt? ————4m/m -
: r 1’4 }"63 ;/'2
1- %4

2 2
7 r dr
— 3
dSl(’; )zz(l——’5+—2]czdt2——2
r T r
5 r
1_£+T

r 7

: (5.15.90)

r?(do? +sin® 0dgp”)

r*(d6* +sin* 0dg?)

b

rz(a’H2 + sin > 0d¢2)

—rz(de2 +sin’ ﬁd(pz)
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Also metric (5.15.29)

2 2
ds? :(l_w+r_2chdt2 - dr . —}’Z(a'ﬁ2 +sin” Qd(pz) (5.15.91)
r 7 A Sl R T
r I’62

in the same approximation can be represented as four separate metrics:

2 2
ds" % ~ 1—7/—7+rT c*dt* —d;—rz(a’é?2 +sin’ Hd(p2)
, roork o 2
r s,

(5.15.92)

2 2
dsf;")z ~ [1 —r—8+r—2Jc2dt2 _(d;z— 7’2(616’2 +sin”’ «9d(p2)

2 2
- r, r dr :
dsC " | 12 L |ear - ——r(d0? +sin’ 0dy?)
r 7"6,9 }/'9 7
2
r 7’6’9
2 2
___ 7 r dr .
st x| 1= ey ——r(d0* +sin’ 0dy?)
T e (_to T
2
o T

After examining these metrics individually, can define rules for combining the results, such as
averaging and the superposition.

Similar actions can be taken with all other metrics (5.15.24) through (5.15.36).

If the cores and the outer shells of all stable spherical vacuum formations are on average similar
to each other, then their rakya are unique, since the environment of the cores depends not only in what
nuclei they are inside, and what cores are inside them, but also on their position in the Universe.

Further studies of rakya of vacuum formations in the axiomatic framework of the Algebra of
Signatures can lead to the development of a powerful mathematical apparatus, which, in conjunction
with a fractal visualization, would allow us to expand our understanding of the fine structure of vacu-
um formations.

Once again, let's emphasize the amazing ability of fractals to visualize various aspects of the
manifestation of vacuum structures. One can try to describe in detail the contours of visual sensations,
that are induced by the mathematical apparatus of the Algebra of Signatures (Alsigna), but sometimes

it is enough to admire the view of a single fractal (e.g., Figure 5.15.8), to render extensive verbal de-
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scriptions unnecessary. Mathematics, consistent with fractal plots, acquires shades of solidity, and the

logical constructions of the Alsigna find support in fractals in the form of tangible contact with reality.

Fig. 5.15.8. Fractals are an amazing way to visualize the geometric essence of vacuum formations and of vacuum pro-
cesses. Often the fractal contains such a huge volume of figurative information, the description of which would require
dozens of pages of text, but such a detailed text would not have the exhaustive harmony of the fractal image

5.16 Summary of Chapter 5
In this chapter:
- the basics of the general dynamics of intra-vacuum layers and a particular case of geometrized

vacuum electrodynamics are presented,
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- the metric-dynamic model of the core of stable vacuum formations the example of the cores of
the «electron» and the «positrony is studied»;

- variants of the development of a dynamic model of rotation of different longitudinal and trans-
verse layers of vacuum extent inside the core of a stable vacuum formation (in particular, the core of
the «electron» and the core of the « positrony).

- the foundations for the study of the rakya (the sphere determined by the Schwarzschild radius,
here labeled the “Schwarzschild horizons™) separating the core of stable vacuum formation from its

outer shell (in particular, the rakya of the «electron» and the rakya of the «positrony) are laid.
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