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Abstract: In this article: a) By the example of the nucleus of a biological cell in a state of inter-

phase, it is shown that the chaotic movement of organelles on average can be ordered and have a 

discrete set of possible averaged states. These averaged states of the nucleus are described by solu-

tions of the generalized stationary Schrödinger equation; b) it is suggested that among the discrete 

set of excited states of the cell nucleus, there are states that prevent the penetration of genetic ma-

terial (RNA and/or DNA) of viruses through the nuclear pores into the karyoplasm. Methods of 

introducing the cell nucleus into an excited state are proposed. It is possible that this method of 

influencing the nucleus and/or other organelles of the cell will be an effective way to fight viral 

infection, including COVID-19; c) the mathematical description of the excited states of the orga-

nelles of a biological cell is aimed at the approval of a new "statistical" interpretation of quantum 

mechanics. 
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1 Introduction 

As is known, organelles inside a biological cell (BC) (see Figure 1a) are in constant chaotic 

movement [16,17,18]. But perhaps there is order in this chaos? The hypotheses expressed in this 

article offer an answer to this question. 

 

 

 

 

 

 

                                                         a)                                                                  b) 

                          

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                          

                                                                              c) 

Fig.1: An eukaryotic cell: a) chaotically wandering organelles inside a biological cell; b) a biological cell with an 

identified nucleus; c) a model of a biological cell with a chaotically wandering nucleus center of mass (which is called 

the c-nucleus) in the vicinity of the conditional center 
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Let's focus only on the nucleus of a biological cell (see Figures 1 b, c), since it is the most 

visible organelle. 

All the conclusions made in this article regarding the cell nucleus concern all other intracel-

lular two-membranous organelles (mitochondria, plasites, etc.) and some one-membrane orga-

nelles (lysosomes, vacuoles, secretory vesicles, etc.), which are in similar physical conditions.  

 

2 Model of a biological cell with a chaotically wandering nucleus 

Consider a living eukaryotic biological cell in the 

period between its division (i.e., in a state of inter-

phase). 

Let’s trace the behavior of the cell nucleus (see 

Figures 1 b, c and Figure 2), which has the form of a 

spherical body with the following parameters:  

    - radius  

            rn  ≈ 3 μm  ≈  0.003 mm  ≈  3×10–6 m,      (1) 

    - mass  

            mn ≈ 6×10–9 mg ≈ 6×10–15kg,                   (2) 

    - area of possible appearance, limited by the cell 

membrane, i.e. dimensions of a BC with a radius  

             rс ≈ 25 μm ≈ 0.025 mm ≈  2.5×10–5 m.     (3) 

The center of mass of the cell nucleus will be 

denoted by a material point with mass mn, and we 

will call this point the "c-nucleus " (see Figure 1c and 

Figure 2). 

Let’s assume that the state of the interphase of the cell under consideration lasts infinitely 

long, i.e. we will assume that BC does not change for a long time. In this case, the c-nucleus con-

tinuously wanders chaotically during the entire observation period in the vicinity of the condition-

al center (see Figures 1c and 2) under the influence of many unconnected force factors. 

 

 
 

Fig. 2: The center of mass of the cell nucleus 

(that is, the material point, conventionally called 

the c-nucleus) continuously wanders chaotically 

in the vicinity of the conditional "center" of the 

biological cell, so that its total mechanical ener-

gy E always remains constant (E = const ) 
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In the framework of the model under consideration, this continuous chaotic movement of the 

c-nucleus is due to the immutability of its total mechanical energy E 

                                         Е  = T(x,y,z,t)  +  U(x,y,z,t) = const,                                           (4) 

where T(x,y,z,t) is the kinetic energy of the c-nucleus associated with the speed of its motion; 

      U(x,y,z,t) is the potential energy of the c-nucleus associated with the elastic properties of 

the cytoplasm, striving to return the c-nucleus to the conditional center (see Fig-

ures 1c and 2). 

The energies T(x,y,z,t) and U(x,y,z,t) of the c-nucleus are random functions of time and the 

place of its position relative to the conventional center, but these energies smoothly flow into each 

other in such a way, that their sum (i.e., the total mechanical energy of the c-nucleus E) always 

remains constant (E = const). 

This condition implies that the chaotic trajectory of the c-nucleus can be considered as a 

three-dimensional stationary random (stochastic) process. 

The speed of the chaotic movement of the c-nucleus is small compared to the speed of light, 

so every instant it has kinetic energy 
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where pх(t), pу(t), pz(t) are the instantaneous values of the momentum components of the wander-

ing c-nucleus. 

The form of the potential energy of the c-nucleus U(x,y,z,t) is specified below. 

The action S of the c-nucleus in nonrelativistic mechanics is defined as follows [1] 
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To simplify calculations, consider a one-dimensional version of the action                         
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without limiting the generality of the conclusions, since in the case of three dimensions, only the 

number of integrations increases. 

Due to the complexity of the chaotic motion of the c-nucleus, we will be interested not in the 

action (6) itself, but in its average [2,3] 
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Let’s represent the averaged kinetic and averaged potential energies of the wandering c - nu-

cleus in the form [2,3] 
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where ρ(px) is the probability density function (PDF) px, i.e. the projection of the c-nucleus mo-

mentum onto the Х-axis;  

            ρ(х)  is the PDF of the location of the projection of the c-nucleus on the Х-axis (see Figures 

1c and 2). 

Substituting (8) into (7), we obtain the averaged action of a constantly randomly wandering 

c-nucleus [2,3] 
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We note once again that this average action of the c-nucleus was obtained under the condi-

tion that the biological cell, on average, remains unchanged during the entire observation period. 

In this case, all the average characteristics of the chaotic motion of the c-nucleus remain constant. 
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3 The generalized Schrödinger equation for a continuously wandering c-kernel 

Let’s represent the averaged action (9) in coordinate form. To do this, perform the following oper-

ations [2,3]: 

1] Let’s write the PDF ρ(х) in the form of the product of two the probability amplitude ψ(x): 

                          ,)( xxx     given that  .1)()( 




dxxx                                (10) 

In quantum physics, the probability amplitude ψ(х) is called the "wave function". 

         2] Let’s represent the averaged kinetic energy of the c-nucleus in the form [2,3] 
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3] Let’s represent the averaged potential energy of the c-nucleus in the form 
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4] Let’s represent the total mechanical energy of the c-nucleus in the form [2,3] 
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(13) 

where  is the reduced Planck's constant ( = ℎ/2). 

Substituting Expressions (11), (12), and (13) into (9), we obtain a record of the averaged ac-

tion of a chaotically wandering c-nucleus in the coordinate form [2,3] 
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Changing the order of integration in (14), we obtain the functional of the averaged action 
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The extremal ψ(х,t) of the functional (15) is determined by the Euler-Poisson equation [2,3] 
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The generalization of Equation (16) to three dimensions has the form [2]     
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where
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  is the Laplace operator. 

In the case when the wave function does not depend on time, i.e. when
 
ψ(x,y,z,t) = ψ(x,y,z), 

  
Equation (17) takes the form [2] 
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which, up to a factor of 3/2, coincides with the stationary (time-independent) Schrödinger equation 

[4,5,6].    

Let's introduce the notation [2]: 

                                                                     εn = E/mn                                                                (19) 

    - let us call this massless quantity the "total mechanical energiality" of the c-nucleus; 

                                            un( zyx ,, )  = U( zyx ,, )/mn                                                 (20) 

    - let us call this massless quantity the "potential energiality" of the c-nucleus. 

Taking into account (19) and (20), Equation (18) can be represented in the form 
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We divide both sides of the Equation (21) by ħ
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and take into account that there is a connection between the ratio ħ/mn and the main characteristics 

of a stationary random process (see Figure 3), in which the wandering c-nucleus of the BC takes 

part [2,3] 
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where              
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is the standard deviation of a chaotically wandering c-nucleus from a conventional center (see 

Figures 2 and 3);   

                                                nznynxnr  
3

1
                                               (25) 

is the average autocorrelation interval of the considered stationary random process (Figure 3). 

                   

 

Fig. 3: Stationary random processes of changing the projections on the X, Y and Z axes of the same c-nucleus, ran-

domly wandering in the vicinity of the conditional center; here σni, τni  are the standard deviations and autocorrelation 

intervals of the corresponding stationary random processes [2,3] 

 

Taking into account (23), Expression (22) takes the form 
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As a result of simple transformations from Expression (26), we obtain [2] 
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is the scale parameter of the investigated three-dimensional random process. 
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Expression (27) will be called the generalized time-independent Schrödinger equation [2]. 

In the one-dimensional case, Equation (27) takes the form 
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is the scale parameter of the investigated one-dimensional random process. 

Equation (27) makes it possible to determine the averaged stationary states of the chaotically 

wandering c-nucleus of the BC, provided that the cell does not change during the entire observa-

tion time. In this case, the main characteristics of the studied three-dimensional random process 

remain unchanged: σnr = const, τnr = const. 

 

4 The nucleus of a biological cell surrounded by an elastic-tense cytoplasm 

Let’s consider the case when, as the c-nucleus moves away from the conditional center (see Fig-

ures 1c and 2), elastic "tensions" arise in the surrounding cytoplasm, which tend to return the c-

nucleus to this center. 

Note that the cell cytoplasm is a viscous liquid (i.e., a concentrated aqueous solution of pro-

teins and other substances), in which there is an elastic network of a polymer substance [19]. 

Let’s consider the case when the elastic tensions of the cytoplasm σv, on average, increase in 

proportion to the distance of the c-nucleus from the conditional center 

                                                             σv (x) ≈ kux,                                                          (31) 

where ku = Ku /mn  is the massless coefficient of elastic tension of the cytoplasm;  

          Ku is the force constant. 

In this case, the averaged potential energiality of the c-nucleus can be approximately repre-

sented in the form 

                                                 )(xun ≈ ∫𝑘𝑢𝑥 𝑥𝑑𝑥 =
1

2
𝑘𝑢𝑥𝑥

2.                                           (32) 

Substituting (32) into Equation (29), we obtain the equation of the "one-dimensional quan-

tum harmonic oscillator" known in quantum mechanics 
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The study of this well-known equation leads to the following discrete series of the total me-

chanical energiality eigenvalues of the c-nucleus [7,8,9]: 
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where k = 1, 2, 3, ... is the principal where k = 1, 2, 3, ... is the principal quantum number

uxk = ωn0 = 2πfn0
  is the angular frequency of "one-dimensional quantum harmonic oscillator". 

Each discrete of the total mechanical energiality eigenvalue εnk (35) corresponds to an 

eigenwave function, which is one of the solutions of Equation (34) [7,8]: 
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where according to (23) and (30) 
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 is the scale parameter of the investigated stationary random process (see Figure 3). 

Let’s write out several eigenwave functions (36), describing various averaged states of a 

constantly randomly wandering c-nucleus, the deviation of which from the conditional center 

leads to elastic tensions of the surrounding cytoplasm (see Figures 1c and 2), [7,8,9] 
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The form of the square of the modulus |nk|
2 of the eigenwave functions nk (38) – (40) is 

shown in Figure 5 [7,8,9] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

 

 

Fig. 5: The probability density functions |nk|2 of the possible location of the c-nucleus in the vicinity of 

the conditional center [7,8]. The dashed lines mark the possible boundaries of the BC depending on the 

degree of excitation of the c-nucleus 

 

 

From the PDFs shown in Figure 5, it follows that for k = 0 the most probable location of the 

c-nucleus coincides with the conditional center. Whereas in the first excited state, i.e. for k = 1, the 

c-nucleus is mainly located in the region of a sphere with a radius of the order of rc/2. In the sec-

ond excited state, i.e. when k = 2, the c-nucleus can be most likely to be located both in the center 

of a biological cell and in a spherical region close to its periphery. 

From Expression (35) it follows that for k = 0 the total mechanical energiality of the c - nu-

cleus is not equal to zero 
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in this case, the c-nucleus continuously wanders chaotically near the conditional center, so that the 

PDF to detect it in this region is described by the Gaussian function 
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From PDF (43), taking into account (41), it follows 
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Taking into account (30), it follows from (44) that the massless coefficient of elastic tension 

of the cytoplasm ku is inversely proportional to the square of the averaged autocorrelation coeffi-

cient of the random process under study: 
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On the other hand, ku, as is known [7,8], is proportional to the natural frequency of oscilla-

tions of this "one-dimensional quantum harmonic oscillator" ku = (2πfn0)
2 [see Expression (35)]. 

Let's assume that for a chaotically wandering c-nucleus, the autocorrelation coefficient of a 

random process is nx ≈ 3×10–3 s, then, according to (45) and (35), its natural frequency of oscilla-

tions (i.e., jitter) is approximately equal to 
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This means that external oscillatory processes with a frequency of the order of frn ≈ f0n ≈ 64 Hz can 

effectively (resonantly) affect the nucleus of a biological cell. 

If we assume that the speed of propagation of sound vibrations in the cell cytoplasm is ap-

proximately equal to vv  ≈ 1500 m/s (this is the average speed of propagation of sound vibrations in 

the soft tissues of the human body), then the wavelength of sound vibration capable of abruptly 

changing the average state of the k-nucleus, is approximately equal to 
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Frequency (46) and wavelength (47) are preliminary (a priori) estimates of the characteris-

tics of the effective stimulating effect on the cell nucleus under consideration. More detailed and 

precise information about disturbances that can effectively influence the averaged states of the 

nucleus and other similar organelles of a biological cell should be obtained as a result of experi-

ments. 

 

5 Chaotically trembling c-nucleus is the three-dimensional quantum harmonic oscillator 

The c-nucleus wanders chaotically in a three-dimensional volume of the cytoplasm surrounded by 

a membrane (Figures 1c and 2). A quantum three-dimensional harmonic oscillator should be con-

sidered as a mathematical model of its behavior. In this case, the generalized Schrödinger equation 

has the form [7,11] 
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(48) 

This equation is solved by the method of separation of variables, i.e. the solution is sought in 

the following form [7,11] 

                                                  .)()()(),,( zyxzyx                                                 (49) 

In this case, from Equation (48) we obtain the system of equations [7, 11] 
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                                                  .nznynxn                                                           (53) 

Each of these equations is similar to the equation for a one-dimensional harmonic oscillator 

(33); therefore, we obtain three sets of discrete values of mechanical energiality [8] 
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1
1 yuynynyk kk ,   

  











2

1
1 zuznznzk kk ,       (54) 
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which correspond to eigenwave functions of the form (36) [8]: 
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(59) 

In this case, discrete values of the total mechanical energiality 

                                                 nzknyknxknk                                                     (60) 

correspond to wave functions of the form 

                                                   .)()()(),,( zyxzyx nknknknk                                            (61) 

Let’s assume that a biological cell is a spherical (i.e., spherically symmetric) formation. This 

corresponds to an isotropic three-dimensional harmonic oscillator with parameters  

                                  
1111 nznynxnr    and uzuyuxur kkkk  .  

Therefore, the total mechanical energiality of the c-nucleus can take on a discrete series of 

values [7] 

                                                  











2

3
1 NkurnrnN  ,                                               

 

(62)

 

where N = kx + ky +kz ,  N = 1,2,3,... is called the degeneracy multiplicity [7] (or single quantum 

number).  

However, multiplying the wave functions (56) – (59), we find that it is impossible to write 

                                              
.)()()()( rzyx nknknknk    

In quantum mechanics, this means that it is impossible to excite the c-nucleus in all three direc-

tions X, Y and Z simultaneously [7]. That is, it should be expected that additional quantum effects 

may arise when trying to transfer the cell nucleus from one averaged state to another more excited 

averaged state. 

https://en.wikipedia.org/wiki/Quantum_number
https://en.wikipedia.org/wiki/Quantum_number
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6 Averaged c-nucleus moment of velocity 

Additional effects in the case of an isotropic three-dimensional quantum harmonic oscillator arise 

due to the fact that during the chaotic motion of the c-nucleus in the vicinity of the conditional 

center, it constantly changes its direction of motion (see Figures 1c and 2). Therefore, the c - nu-

cleus at each moment of time has the angular momentum 

                                            

                            𝐿⃗ = 𝑟 × 𝑝 ,                                                            (63)  

where r


is the radius vector from the conditional center to the c-nucleus (see Figure 2); 

           𝑝 = 𝑚𝑛𝑣  – instantaneous value of the c-nucleus momentum. 

In this case, the possible average values of the angular momentum of the c-nucleus can take only a 

discrete series of values (i.e., they are quantized), as will be shown below. 

Let’s represent the vector Equation (63) in the component form 

                                   .,, xyzzxyyzx ypxpLxpzpLzpypL                               (64) 

Let's average these components 

                              .,, xyzzxyyzx pypxLpxpzLpzpyL 
                          

(65) 

We will use the coordinate representation of the averaged pulse components [2,3] 
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Substituting (66) – (68) into (65), and taking into account (10), we obtain quantum mechani-

cal operators [8]            
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We divide both sides of Expressions (69) by mn  
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Taking into account (23), we have 
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where zyx lll


,,  are the components of the c-nucleus velocity moment operator, since 
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In a spherical coordinate system, massless operators (71) have the form [8] 
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The operator of the square of the modulus of the c-nucleus velocity moment operator is [8] 
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(75) 

This operator will be used below. 

 

7 Isotropic 3D harmonic oscillator 

The generalized Schrödinger Equation (48) for an isotropic three-dimensional harmonic oscillator 

can be represented as [8] 
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where 222 zyxr  is the distance from the conventional center to the c-nucleus (Figure 2); 
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is the Laplace operator in spherical coordinates, while the operator 2

, is given by Expression 

(75).  When substituting (77) into Equation (76) and dividing variables 

                                                       ),()(),,(  YrRr  ,                                                    (78)  

we obtain the equation [8.9] 
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The solutions to this equation are wave functions [12] 
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  are associated Legendre functions                      (83) 

 = cos ;  

 l  is the azimuthal quantum number; 

m  is the peripheral  quantum number.  

In atomic quantum physics, the number m is called the “magnetic quantum number”, but 

this name is not suitable for the quantum physics of a biological cell and other similar objects of 

micro- and macroworlds. Therefore, in this article, the number m is proposed to be called “pe-

ripheral quantum number”. 

Wave functions (80) correspond to the eigenvalues of the total mechanical energy of the      

с-nucleus [12] 

https://en.wikipedia.org/wiki/Laguerre_polynomials#Generalized_Laguerre_polynomials
https://en.wikipedia.org/wiki/Spherical_harmonics
https://en.wikipedia.org/wiki/Azimuthal_quantum_number
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The wave functions (80) correspond to the eigenvalues of the total mechanical energiality of 

the с-nucleus [12] 
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где  N = 2k + l.

                    

(84) 

The squares of the modulus of wave functions (80) | ),,(  rklm
|2 (i.e., the PDF of the possi-

ble location of the c-nucleus inside the BC) at φ = 0 and different values of the quantum numbers 

k, l, and m are shown in Figure 6. 

                   

            k = 2, l = 0, m = 0                 k = 3, l = 2, m = 0                 k = 4, l = 1, m = 1                k = 4, l = 0, m = 0 

           

             k = 4, l = 1, m = 0                k = 5, l = 2, m = 0                k = 6, l = 3, m = 1                k = 6, l = 2, m = 1       

Fig. 6: The probability density function (PDF) | ),,(  rklm
|2 possible locations of the c-nucleus at φ = 0 and differ-

ent values of the quantum numbers k, l and m. The lighter the spot, the more likely a c-nucleus will appear in this area. 

Calculations were performed using Expression (80) [12] and presented on the web page: 

            https://upload.wikimedia.org/wikipedia/commons/b/b3/2D_Spherical_Harmonic_Orbitals.png 

 

 

Figure 6 shows that each set of three quantum numbers k, l, and m corresponds to a unique 

spatial configuration of the average state of chaotic wandering (trembling) of the c-nucleus (i.e., 

the PDF of the place of appearance of the c-nucleus inside the biological cell). 

As is known, there is also a fourth spin quantum number s [5,6,7], which in the case under 

consideration, seemingly, is associated with one of the two possible directions of rotation of the 

cytoplasm inside the biological cell. However, this process is not covered in this article. 

https://upload.wikimedia.org/wikipedia/commons/b/b3/2D_Spherical_Harmonic_Orbitals.png
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To experimentally fix one of the spatial configurations shown in Figure 6, it is necessary: 

- to ensure the absence of a tangible influence of external and internal force factors on the 

biological cell for the entire period of observation of the cell nucleus. 

- make a video recording of the chaotic behavior of the nucleus for a long period of time; 

- take into account that the cell as a whole can participate in complex Brownian and/or 

thermal motion; these movements must be eliminated physically or excluded by software; 

- take into account that the cell nucleus can change its shape, and its internal content (karyo-

plasm, chromatin etc.) can change over time; this leads to blurring of the boundaries of the spatial 

configuration of the averaged state of trembling of the given organelle. Therefore, it is necessary 

to monitor not the behavior of the entire cell nucleus, but the chaotic movement of only its center 

of mass, which in this article is conditionally called the c-nucleus. In other words, it is needful to 

programmatically identify the center of mass of the cell nucleus (i.e., the c-nucleus) and monitor 

only it's motion. 

- digitized, software-cleaned and mathematically processed video recording of the chaotic 

behavior of the c-nucleus (i.e., the center of mass of the BC) need to reproduce at high speed, with 

the display of this highly accelerated process on the computer monitor. The speed of reproduction 

of the motion of the c-nucleus should be so fast that this point is "smeared" over the entire obser-

vation area. 

- if all the above actions can be performed with a sufficiently high resolution of the video 

equipment, as cleanly as possible and with the exclusion of various interfering factors, then in ac-

cordance with the hypothesis set out in this article, the configuration of dark and light spots should 

be revealed on the monitor screen (similar to one of the spot configurations shown in Figure 7). In 

this case, a dark spot on the monitor screen should mean that the c-nucleus appeared in this place 

more often than in the place where the light spot was formed. 

It is possible that the configuration of these dark-light spots will to correspond to one of the 

eigenwave functions ),,(  rklm  (more precisely, PDF | ),,(  rklm |2) of the isotropic three-

dimensional quantum harmonic oscillator (see light-dark spots shown in Figure 6). 
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Fig. 7: Examples of possible configurations of dark-light spots that can be revealed as a result of averaging the chaotic 

movement (tremor) of the c-nucleus inside a biological cell. These spot configurations can correspond to eigenwave 

functions ),,(  rklm
 (80) with different sets of three quantum numbers k, l, and m 

  

Using sound vibrations with a resonant frequency (i.e., with a frequency close to the natural 

frequency of vibrations of the considered isotropic three-dimensional quantum harmonic oscilla-

tor) to influence the cell nucleus, thereby changing the average state of the chaotic wandering of 

its center of mass (i.e. c-nucleus). After that, all the above steps should be repeated to identify a 

different configuration of dark-light spots, corresponding to a more excited state of the c-nucleus. 

It is possible that these oscillations must be excited simultaneously from two opposite ends 

of each of the three mutually perpendicular directions. This will make it possible to exclude the 

possibility of translational displacement of the c-nucleus due to unilateral action. 

If the fundamentals of the quantum physics of the organelles of a biological cell, described 

in this article, turn out to be correct, then the quantum transition of the c-nucleus from one aver-

aged state to its other state (i.e., an abrupt change in the configuration of dark-light spots on the 

monitor screen) should occur at transfer to this c-nucleus of additional portion of the total mechan-

ical energiality 
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                                                        Δεn = εnk – εnk+j ,                                                       (85) 

 where εnk  is the total mechanical energiality of the c-nucleus in the state k; 

            εnk+j  is the total mechanical energiality of the c-nucleus in the state k + j (here j = 1,2,3, ...). 

In this respect, quantum biophysics (⁓10–3cm) should not differ in any way from the quan-

tum physics of elementary particles (⁓10–13cm). The difference lies only in the scales of the pro-

cesses under consideration, which differ from each other by about 10 orders of magnitude. Mean-

while, there is no doubt in the modern scientific community that quantum mechanics is applicable 

to describe processes on intermediate scales, i.e. at the molecular level (⁓10–8cm) [13,14,15]. For 

example, quantum-mechanical methods describe oscillations of the atomic lattice (phonons), mo-

lecular vibrations, etc. 

 

8 Features of the transfer of the c-nucleus into an excited state 

As it was said in the previous paragraph, in order for the c-nucleus to pass from one stable state to 

another, it is necessary to exert a force on it that gives it an additional total mechanical energeti-

city Δεn (85). However, this effect should not change the state of chaotic movement of the entire 

biological cell as a whole. 

Everything that has been written above regarding the chaotic behavior of the cell nucleus al-

so applies to the biological cell itself (separated from the external environment by the cell mem-

brane). A cell can also be represented as a material point and called it the BC-core. This BC-core 

also continuously wanders (trembles) chaotically in the vicinity of some conditional cent (see Fig-

ure 8). 

Everything that has been written above regarding the chaotic behavior of the cell nucleus al-

so applies to the biological cell itself (separated from the external environment by the cell mem-

brane). A cell can also be represented as a material point and called it the BC-core. This BC-core 

also continuously wanders (trembles) chaotically in the vicinity of some conditional cent (see Fig-

ure 8). 
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       Fig. 8: Chaotically wandering center of mass of a biological cell (i.e., BC-nucleus), inside which 

                               the center of mass of its nucleus (i.e., the c-nucleus) wanders chaotically 

 

 

Therefore, the averaged behavior of the BC-core can be described in the same way by a dis-

crete set of solutions of the generalized Schrödinger equation of the form (27), but in this case, 

instead of the scale parameter (23), we substitute into Equation (27) the scale parameter  

                                                                  ,
2 2

сr

сr
с




 

                                                             

(86) 

where 

                                      222

3

1
сzсyсxсr                                                    (87) 

is the standard deviation of a chaotically wandering BC-core (i.e., the center of mass of the en-

tire biological cell) from the conditional center of location of this biological cell (see Figure 8); 

                                                        czcycxсr  
3

1
                                                (88) 

is the averaged interval of autocorrelation of a stationary random process, in which the chaoti-

cally wandering center of mass of a biological cell is continuously involved (see Figure 8). 
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Let's suppose that the averaged characteristics of a given stationary random process are of 

the order of 

                                            σс  ≈ 2,3×10–5 m     and    τс ≈ 4×10–2 s.                                (89) 

As in the case of the k-core, the natural frequency of oscillations of such a quantum harmon-

ic oscillator is approximately equal to 

                                                   f0с  ≈ 
nс2

1

2

3
 ≈ 4,8 Hz.                                              (90) 

This also means that the BC-core can be effectively affected by sound harmonic vibrations 

of the liquid medium surrounding the biological cell with a wavelength approximately equal to 

                                                  
8,4

1500

0


c

v
vc

f

v
 ≈  312,5 m.                                          (91) 

When comparing the obtained estimates of the resonance frequencies (46) and (90), as well 

as the wavelengths of the disturbing oscillations (47) and (91), we find the following. To change 

the averaged state of only the c-nucleus, while leaving the BC-core in the same state, it is recom-

mended to excite sound vibrations in the surrounding aqueous medium in a narrow frequency 

range Δfrn ⁓ 10 – 15 Hz with a carrier wavelength of the order of 
vn ⁓ 23.4 m. 

These a priori characteristics of the exciting effect on the nucleus (or on any other organelle) 

of BC can be refined as a result of experiments. 

 

9 Results 

This article hypothesizes that during the interphase (i.e. when a living biological cell remains in an 

unchanged, stable state), some particle-like cell organelles, although they move along complex 

(chaotic) trajectories, but their complete mechanical energy and the average motion configuration 

remains unchanged. In this case, the discrete set of possible values of the total mechanical ener-

giality (TME) of the organelle εnk (in particular, the cell nucleus) and the corresponding averaged 

states |nk|
2, corresponds to the solutions of the generalized Schrödinger equation (27). 

The transition from one averaged state of the organelle |nk|
2 to its other averaged state 

|nk+j|
2 should occur when a quantum (i.e., portion) is transferred to this organelle by the TME            
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Δεn = εnk – εnk+j. This TME quantum can be transmitted to the organelle by using of wave (in par-

ticular, sound) disturbances of the surrounding liquid medium with a resonant frequency frn ap-

proximately equal to the natural vibration frequency of this organelle (frn ≈ f0n). In order to excite 

only the required organelle (in particular, the cell nucleus), it is necessary that the wave (sound) 

disturbance be narrowly directed and with a small frequency range. For example, to excite the cell 

nucleus (i.e., to transfer it to another average state), a priori estimates of the resonant disturbance 

frequency frn ⁓ 64 Hz and the range of disturbing frequencies Δfrn ⁓ 10 –15 Hz.   

After the resonant frequency frn and the range of disturbing frequencies Δfrn are refined as a 

result of the experimental verification of the effectiveness of their effect on the cell nucleus, sound 

radiation with these a posteriori characteristics can be directed to the whole organism or to one 

organ, which can lead to additional collective quantum effects. 

When the organelle returns from the excited state |nk+j|
2 to the state with a smaller TME 

|nk|
2, it must emit a wave disturbance to the surrounding liquid medium with an energy of the 

order Δεn ≈ |εnk+j – εnk|. In other words, this article suggests that quantum biophysics is in many 

ways similar to quantum subatomic, atomic, and molecular physics. 

 

10 Conclusions 

Artificial translation of the organelle (in particular, the cell nucleus) into an excited state can be of 

practical importance. For example, it is possible that the genetic material (DNA and/or RNA) of 

viruses will find it more difficult to penetrate into the cell nucleus through its pores if it is in one 

of the excited states (see Figure 7). Therefore, it is possible that the method of sound or other me-

chanical action on the cell nucleus and/or other organelles will be an effective way to fight viral 

infection, including COVID-19. 

The second no less important aspect touched upon in this article is the further substantiation 

and confirmation of the “statistical interpretation of quantum mechanics”, the foundations of 

which were set forth in the author's articles [2,3,20], and is as follows: 

1] if any particle (regardless of its scale, be it: an electron in a hydrogen atom, a nucleus of a 

biological cell, a yolk in an egg, a fly in a glass jar, the tip of a tree branch, an embryo in the 
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womb, a nucleus in the interior of a star or planet, and etc.) constantly randomly wanders (trem-

bles) in the vicinity of the conditional center, so that its total mechanical energy (more precisely, 

the energiality) remains unchanged, then the averaged behavior of the center of mass of such a 

particle is described by the generalized Schrödinger equation (27) with a scale parameter of the 

form (28); 

2] in order to detect  the averaged state of a wandering particle, it is necessary to record its 

chaotic behavior for a long period of time, and then reproduce this record at high speed. In this 

case, not the moving center of mass of such a particle will be visible on the monitor screen, but an 

area of blurred dark-light spots corresponding to the probability density function of finding a par-

ticle in different parts of this area. 

This method of detecting the averaged configuration of a particular discrete state of a wan-

dering particle corresponds to long-term data collection and statistical processing of experimental 

observations; therefore, this approach is called “statistical interpretation of quantum mechanics”. 

It should be noted that the name "statistical" interpretation of quantum mechanics was pro-

posed by Academician of the Russian Academy of Natural Sciences G.I. Shipov. 

This approach to the interpretation of quantum phenomena is devoid of many of the short-

comings of Copenhagen, Many Worlds, Quantum Bayesianism and many other interpretations of 

quantum mechanics. 

At the same time, it is no less important to state that quantum effects are inherent not only in 

the microworld, but also in the macroworld; only to obtain the averaged characteristics of the cha-

otic behavior of macroscopic objects, much more observation time is required. 

If the hypothesis stated in this article about the subordination of the chaotically wandering of 

the cell nucleus to the laws of quantum physics is confirmed experimentally, then this will be a 

significant contribution to the approval of a new "statistical interpretation of quantum mechanics." 
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