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5 The overall dynamics of vacuum layers and «vacuum electrostatics» 

In this chapter, the overall dynamics of vacuum layers is considered, in particular "vacuum 

electrostatics". The rotation of the vacuum layers within the core of the stable vacuum formation (in 

particular the inside cores of the «electron» and «positron») is investigated. The foundations for 

studying the “rakya” (boundary) separating the core of stable vacuum formation from its outer shell 

are laid. 

    5.1 Stratification of «vacuum»  

The subject of the study of Algebra of Signatures 

(Alsigna) is a volume of the "vacuum", i.e. a local portion of the 3 

- dimensional void (see Definitions 1.1.1, 1.12.5).  

In the framework of the Algebra of Signatures, the "vacu-

um" is stratified into an infinite number of nested m,n-vacuums 

(Figure 5.1.1 or 1.5.1), which are detected in the void by using 

monochromatic beams of light with wavelengths m,n from differ-

ent ranges given by Δ = 10m 10n cm, where n = m +1 (see §§ 

1.1 through 1.4).  

In this a Chapter, we dwell on the geodesics of the curved portion of only one of m,n-vacuums 

(i.e., one transverse 3-dimensional vacuum layer, Figure 5.1.1). The geodesics of the remaining               

m,n-vacuums are described similarly.  

Recall that, within the framework of the Algebra of Signatures, the simplest is the uncurved 

section of the 8-dimensional 23-m,n‐vacuum region (see § 1.21), which is described by a system of two 

metrics with mutually opposite signatures {see (1.7.3) and (1.7.4)} 

  ds(–)2 =    c2dt2 – dx2 – dy2  – dz2 =    dx0
2 – dx1

2 – dx2
2 – dx3

2 = 0   with signature  (+ – – –);  (5.1.1) 

  ds(+)2 = – c2dt2 + dx2 + dy2 + dz2 = – dx0
2 + dx1

2 + dx2
2 + dx3

2 = 0  with signature  (– + + +),  (5.1.2) 

satisfying the vacuum condition  

            ds(±)2 = ½(ds(–)2 + ds(+)2) = ½ [(c2dt2 – dx2 – dy2 – dz2) + (– c2dt2 + dx2 + dy2 + dz2) ]= 

                                               = 0·c2dt2 + 0·dx2 + 0·dy2 + 0·dz2
 = Ɵ,                                           (5.1.3) 

where Ɵ is the true zero (see Definitions 1.4.1, 1.12.4).  

The metric-dynamical state of the same, but curved section of the 23-m,n‐vacuum region is de-

scribed by the averaged metric (§1.21 and §1.22)  

 

                              ds(±)2 = ½(ds(–)2 + ds0
(+)2) = ½(gij

(–) – gij0
(+))dxidxj,                              (5.1.4) 

where  

                             ds(–)2= ds(+ – – –)2  = gij
(–)dxidxj   with signature  (+ – – –),                                (5.1.5)  

 

Fig. 5.1.1. m,n-vacuum is nested in     

f,d -vacuum, where f,d   m,n 
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Fig. 5.1.2. Relationship between 

the segments ds(–)
 and ds(+) 

 
Fig. 5.1.3  If you project the 

lines of a regular double helix 
onto a plane, then at the point of 

intersection they are mutually 
perpendicular to each other 
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(5.1.6) 

is the metric tensor of the "outer" side of the 23-m,n-vacuum region (or 

subcont – see Definition 1.7.4);  

        ds(+)2 = ds(– + + +)2 = gij
(+)dxidxj   with signature  (– + + +),     (5.1.7) 
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                          (5.1.8) 

     is the metric tensor of the "inner" side of the 23-m,n-vacuum region (or 

antisubcont – see Definition 1.7.5). 

It is important to note that the expression (5.1.4)  

                          ds(±)2 = 
2

1 ds(–)2 + 2
1 ds(+)2                        (5.1.9) 

is, in fact, the Pythagorean theorem c2 = a2 + b2 (see § 1.22 ). This means 

that the line segments  (½)1/2ds(–) and  (½)1/2ds(+) are always mutually per-

pendicular to each other: ds(–) ds(+) (Figure 5.1.2), and two lines directed 

in the same direction can always be mutually perpendicular only when 

they form a regular double helix (Figure 5.1.3).  

Thus, the average metric (5.1.9) corresponds to the segment                  

2-"braid" (Definition 1.22.1), consisting of two interwoven spirals s() and 

s(+), which can be described by a complex number        

                                        ds (±)= 2
1 (ds(–)+ids(+)),                                (5.1.10)   

the square of the module of which is equal to (5.1.4). Here i is the imaginary unit 1 , fulfilling the 

function of a unit vector, giving the direction to the linear element  ds(+) which is perpendicular to the 

direction of the linear element ds(–).  

 

5.2 The equation of the geodesic line in a two-sided 23-m,n-vacuum region 

The shortest distance between two infinitely close points p1 and p2 in a curved 23-m,n‐vacuum 

region, i.e. the minimal length of the 2-helix (5.1.10), is defined as the extremal of the functional  

                                                         S = ds(±) = 2
1 (ds(–)+ids(+)),                                                                  (5.2.1)   

where the limits of integration are the points p1 and p2 .  
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We find the equation of this extremal, based on the condition that the first variation is equal to 

zero.   

                                             S = 2
1  (ds (–) +ids (+)) = 0.                                            (5.2.2)    

Both parts of the expression (5.2.2)  can be multiplied by 2 ; then we have 

                                                  S = ds(–)+i ds(+) = 0,                                               (5.2.3)    

or, taking into account (5.1.5) and (5.1.7)    

                                       S =  ji
ij dxdxg )( + i  ji

ij dxdxg )(  = 0.                                 (5.2.4)   

Variations in the expression (5.2.4) can be considered separately 

                                          ji
ij dxdxg )( = 0,         ji

ij dxdxg )( = 0.                                                   (5.2.5)    

Extremal of the functionals (5.2.5) are defined identically; therefore we consider the general case [34]  

                                                            ,
2

1


р

р

dsS                                                                                             (5.2.6)    

                             where                            

                                                                 ji
ij dxdxgds 

                                                      
   (5.2.7) 

is the element of the 4-dimensional line with any of the 16 possible signatures (1.10.13).   

Consider the first variation of the functional (5.2.7)    

                                            S = ds =  ji
ij dxdxg = 0,                                                                        (5.2.8)    

provided that at the ends of the line under consideration (i.e., at the points p1 and p2), the variations are 

equal to zero  

                                     0)()()()( 2121
 рррр xxdsds  .                                   (5.2.9)    

We use the expression [34]  

                                                             dsdsds  22                                                         (5.2.10)    

from which follows  
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where we use the commutativity of the operations of variation and differentiation, ).()( ii xddx      

Substituting the expression (5.2.11) into the integral (5.2.8) and dividing and multiplying by ds, 

we obtain [34]                                                                              
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 .               (5.2.12) 

We integrate the expression in parentheses by parts:  
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                 (5.2.13) 

Due to (5.2.9), the first term in this expression vanishes. Substituting the remainder of (5.2.13) 

in (5.2.12), and differentiating, we arrive at the expression [34]  
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jij .                (5.2.14)     

From the fact that the integral (5.2.14) vanishes for any variation xμ, the expression, enclosed 

in brackets goes to zero. Whence, taking into account the relation gμj gμj = 4, after simple calculations 

we obtain [34]  

                     0
2

2


ds

dx

ds

dx
Г

ds

xd ji
l
ij
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,        or          
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dx
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xd ji
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2

2

,                    (5.2.15)   

           where  
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1   are the Christoffel symbols.                   (5.2.16)       

Making similar calculations for the variations (5.2.5), we obtain the two equations      

                                                          0)(
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l
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,                                                  (5.2.17) 
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,                                                (5.2.18) 

where, respectively  
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1  are the Christoffel symbols of the ubcont;              (5.2.19)       
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1  are the Christoffel symbols of the antisubcont.        (5.2.20)  

 

When considering the variation (5.2.4), and considering the resulting Christoffel symbols 

(5.2.19) and (5.2.20), we find that the desired extremal functional (5.2.1) is defined by the following 

equation of the geodesic in the curved bilateral 23‐m,n-vacuum region  
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Fig. 5.2.1.  With an ac-

celerated fall, the water 

jet is twisted into a spiral 
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          or  
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)( )()(
2

2
  .             (5.2.22) 

 

Within the Algebra of Signatures (Alsigna), the expression (5.2.22) 

determines the accelerated motion of the local bilateral portion of the                

23‐m,n-vacuum region, in a 2-braid. Further, it will be shown that this ex-

pression also contains information about the dynamics of the curved           

3-dimensional layer of the "vacuum", whose dimensions of irregularities are 

commensurable with 100·m,n.  

  

5.3 Eight-sided consideration 

More accurate and harmonious is not a 2-sided but an 8-sided consideration of a local portion 

of a 26‐m,n-vacuum region (see Chapter 1). In this case, we consider not the two 4-dimensional sides 

of one "sheet", (Figure 1.21.1), but rather the eight "sides" of the vacuum cube (Figure 1.6.2). There-

fore, at this level of consideration, the curved state of the 26‐m,n-vacuum region is not described by a 

superposition of two 4-metrics, as in the previous paragraphs, but rather sixteen 4-metrics {see 

(1.20.5)}  

           

 

,0)16()15()14()13(

)12()11()10()9(

)8()7()6()5(

)4()3()2()1(
16

1

2
)16(










ji
ij

ji
ij

ji
ij

ji
ij

ji
ij

ji
ij

ji
ij

ji
ij

ji
ij

ji
ij

ji
ij

ji
ij

ji
ij

ji
ij

ji
ij

ji
ij

q
ji

q
ij

dxdxgdxdxgdxdxgdxdxg

dxdxgdxdxgdxdxgdxdxg

dxdxgdxdxgdxdxgdxdxg

dxdxgdxdxgdxdxgdxdxgdxdxgds

            (5.3.1) 

where 
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are the components of the metric tensor of the qth metric space with the corresponding signature  
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q
ijgsign                        (5.3.3) 

 

Within the framework of the Algebra of Signatures, the expression (5.3.1) describes a 16-braid, 

formed in an additive manner (weave) of sixteen 4-dimensional metric spaces (see §§ 1.17 through 

1.22). In this case, a segment of a 16-helix, consisting of the 16 interlaced segments ds(q), is described 

by the expression {see (1.22.31)}   

 

                         ds(16)
 =  η1 ds(+– – –)   +  η2 ds(+ + + +)   +  η3 ds(– – – +)  +  η4 ds(+ –  – +)  +   

                                   + η5 ds(– – + –)  + η6 ds(+ + – –)   +  η7 ds(– + – –)  +  η8 ds(+ –  + –)  +                   (5.3.4) 
                                   + η9 ds(– + + +) +  η10

  ds(– – – –) + η11 ds(+ + +  –) + η12 ds (– + + –) +  
                             + η13 ds(+ + – +) + η14

  ds(– – + +) + η15 ds(+ – + +) + η16 ds(– +  – +),    
 
where ηm (m = 1, 2, 3, ..., 16) is an orthonormal basis of objects (similar to an imaginary unit) that sat-

isfy the anticommutation relation of a Clifford algebra  

                                                       ηmηn + ηnηm = 2δmn ,                                                 (5.3.5) 

where δnm is the 1616 identity matrix.  

The section of the 16-braid (5.3.4) can be written as the sum of two complex conjugate 8-braids 

(octonions)  

                                                   ds(16)
 = ds(8)

(–) + ds(8)
(+) ,                                                                      (5.3.6) 

where  

                ds(8)
(–) =   ζ1 ds(+ + + +)  + ζ2ds(+ – – –) + ζ3ds(– – – +)  + ζ4ds(+ – – +) + ζ5ds(– – + –) +                               

                            + ζ6 ds(+ + – –) + ζ7 ds (– + – –) + ζ8ds(+ – + –) = 0,                                           (5.3.7) 

 
                ds(8)

(+) =  ζ1 ds(– – – – ) + ζ2 ds(– + + +) + ζ3 ds(+ + +  –) + ζ4 ds(– + + –) + ζ5 ds(+ + – +) +                                

                            + ζ6 ds(– – + +) + ζ7 ds(+ – + +) + ζ8 ds(– + – +).                                                  (5.3.8)   

 

Here the eight objects ζr (where r =1, 2, 3, ... 8) satisfy the anticommutative relationship of a  

Clifford algebra:  

                                                       ζm ζk  + ζk ζm = 2δkm ,                                                 (5.3.9) 

 

where δkm is the Kronecker symbol (δkm = 0  for  m  k  and  δkm = 1 for m = k).  
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These requirements are satisfied, for example, by a set of 8×8-matrices such as:  

  

 

 

 

 

 

(5.3.10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this case, δkm is the identity 88-matrix:  
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where ds(16) is the segment of the 16-braid (5.3.4).  
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Analogously to what was done in § 5.2, we equate the first variation of the given functional to 

zero  

                       S  =   η1  ds(+– – –)   +  η2  ds(+ + + +)   +  η3  ds(– – – +)    +  η4  ds(+ – – +)  +   
                               + η5  ds(– – + –)  + η6   ds(+ + – –)    +  η7   ds(– + – –)   + η8  ds(+ –  + –) +      (5.3.13) 
                               + η9  ds(– + + +) + η10 ds(– – – –)   +  η11  ds(+ + +  –) +  η12 ds (– + + –) +  

                   + η13  ds(+ + – +) + η14  ds(– – + +) +  η15  ds(+ – + +)   +  η16 ds(– + – +) = 0,                                 

  

and perform operations of the type (5.2.6) through (5.2.22), thereby obtaining the equation for the ex-

tremal (that is, the averaged geodesic) in the curved 26‐m,n‐vacuum region 
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are Christoffel symbols for the qth metric space with components of the metric tensor  
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and the corresponding signature  

                       
       
       
       
        .161284

151173

141062

13951
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q
ijgsign                      (5.3.18)   

 

Expression (5.3.14) shows that at this level of consideration, the curved section of the 26‐m,n - 

vacuum region represents complex "braids" and "knots", composed of 16 intertwined  accelerated in-

tra-vacuum currents (Figure 5.3.1).  
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Fig. 5.3.1. Fractal illustration of intertwined intra-vacuum currents  

  

A further level of consideration deals with the a 210‐m,n‐vacuum region (see § 1.16). Its dynam-

ics are similar to the dynamics of a 26‐m,n‐vacuum region, but in this case not 16 accelerated intra-

vacuum currents are intertwined, but rather 256.  

There can be an infinite number of more sophisticated levels of investigation of the "vacuum" 

(see § 1.16). In such a case, each time the dynamics of the subsequent cross-level "vacuum" would be 

the result of averaging (desensitization) of dynamics of the previous one, a significantly subtler and 

more gracefully constructed level.   
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5.4 Hidden dynamics of the transverse vacuum layer  

In § 1.18 it was shown that the metric of the local section of a curved 4-dimensional subspace  

                                                       ds(q)2 = gij
(q)dxidxj,                                                     (5.4.1) 

with any of the 16 possible signatures (5.3.3) may be represented as a scalar product of the two vectors 

specified in the distorted affine spaces with the corresponding stignatures {see (1.18.3)}      

                                ds(q)2 = ds(a)ds(b) = βpm(a)em
(a)αpi

(a)βln(b)en
(b)αlj

(b)dxidxj = gij
(q)dxidxj,                     (5.4.2) 

    where  

                                                 ds(a)=βpm(a)em
(а)αpi

(a)dxi,                                                                            (5.4.3) 

                                                ds(b) = βln(b)en
(b)αlj

(b)dxj
                                                                                (5.4.4) 

are vectors given respectively in the ath and bth curved affine space with a corresponding stignature               

(see §§ 1.17 through 1.18) .  

Here, in turn,     

                                                     αij
(d) = dxi(d)/dxj(d)                                                                                    (5.4.5)        

 

are components of the tensor which effects the elongation of axes of the curved section of the dth affine 

space with the corresponding stignature from the matrix (1.10.13);       

                                                   βpm(d) = (ep(d) em
(d)) = cos (ep(d) ^em

(d))                                      (5.4.6) 

are the direction cosines between the axes of the curved section of the dth affine space with the same 

stignature;  

em
(d) is the basis vector specifying the direction of the mth axis of the dth affine space;  

dx j(d) is the infinitesimal segment along the jth axis of the d th affine space.  

Let us return to the simplest level of consideration of a curved bilateral 23‐m,n‐vacuum region. 

In this case, instead of the metric system (5.1.1) through (5.1.2), the outer and inner sides of the curved 

portion of the 23‐m,n‐vacuum region of the vacuum are described by conjugates metrics  

 

                                     ds(–)2 = gij
(–)dxidxj  with signature  (+ – – –);                              (5.4.7) 

                                    ds(+)2 = gij
(+)dxidxj  with signature  (– + + +),                              (5.4.8) 

 

which, according to (5.4.1) through (5.4.6), can be written as  

 

                                     ds(–)2 = ds(a)ds(b)  with signature  (+ – – –);                                 (5.4.9) 

                                     ds(+)2 = ds(c)ds(d)  with signature  (– + + +),                                (5.4.10) 

 

where  
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                            I            ds(a) = βpm(a)em
(а)αpi

(a)dxi       with signature  {– – – –}                        (5.4.11)    

                           H            ds(b) = βln(b)en
(b)αlj

(b)dxj 
         with signature  {– + + +}                       (5.4.12) 

                           V            ds(c) = βpm(с)em
(с)αpi

(с)dxi
       with signature  {+ + + +}                       (5.4.13) 

                           H’           ds(d) = βln(d)en
(d)αlj

(d)dxj      with signature  {– + + +}.                      (5.4.14) 

 

Let's find variations of all possible binary scalar products of the vectors (5.4.11) through (5.4.14)  

 

                                (ds(a)ds(b)) =  (ds(a))ds(b) + ds(a)(ds(b))  with signature  (+ – – –)             (5.4.15)           

                               (ds(c)ds(d))  =  (ds(c))ds(d) + ds(c)(ds(d))  with signature  (– + + +)             (5.4.16) 

                               (ds(a)ds(с)) =  (ds(a))ds(с) + ds(a)(ds(с))   with signature  (– – – –)              (5.4.17) 

                               (ds(c)ds(b))  =  (ds(c))ds(b) + ds(c)(ds(b))  with signature  (– + + +)             (5.4.18) 

                               (ds(a)ds(d)) =  (ds(a))ds(d) + ds(a)(ds(d))  with signature  (+ – – –)              (5.4.19) 

                               (ds(d)ds(b))  =  (ds(d))ds(b) + ds(d)(ds(b)) with signature  (+ + + +).            (5.4.20) 

 

Among them, only four variations with different signatures are different    

  

        I            (ds(c)ds(d))  =  (ds(c))ds(d) + ds(c)(ds(d))  with signature  (– + + +)          (5.4.21) 

       H            (ds(d)ds(b))  =  (ds(d))ds(b) + ds(d)(ds(b)) with signature  (+ + + +)          (5.4.22) 

                   V            (ds(a)ds(b)) =  (ds(a))ds(b) + ds(a)(ds(b))  with signature  (+ – – –)           (5.4.23)           

                   H’          (ds(a)ds(с)) =  (ds(a))ds(с) + ds(a)(ds(с))   with signature  (– – – –).          (5.4.24)     

 

The physical meaning of metric layers with signatures (   ) and (+ + + +) is found in con-

sideration of infinitesimal thickness 23‐m,n‐vacuum region between metric layers with signatures               

(+   ) and ( + + +).  

We define a set of "pseudo-force fields", i.e. fields associated with accelerations of a local area 

of the "vacuum" of various types, resulting from the vanishing of the first variations of the four possi-

ble functionals in  

 

   ds(a)={βpm(a)em
(а)αpi

(a)dxi +βpm(a)em
(а)αpi

(a)dxi +βpm(a)em
(а)αpi

(a)dxi+βpm(a)em
(а)αpi

(a)dxi}=0, 
 

   ds(b)={βln(b)en
(b)αlj

(b)dxj + βln(b)en
(b)αlj

(b)dxj + βln(b)en
(b)αlj

(b)dxj + βln(b)en
(b)αlj

(b)dxj} =  0, 
 

   ds(c)={βpm(с)em
(с)αpi

(с)dxi +βpm(с)em
(с)αpi

(с)dxi +βpm(с)em
(с)αpi

(с)dxi+βpm(с)em
(с)αpi

(с)dxi} = 0, 
 

   ds(d)={βln(d)en
(d)αlj

(d)dxj + βln(d)en
(d)αlj

(d)dxj + βln(d)en
(d)αlj

(d)dxj + βln(d)en
(d)αlj

(d)dxj} = 0,  (5.4.24)     
 

 



 195

  
which decompose into variations of 16-sub-functionals.  
     

                     H’                                            V                                               H                                             I                               i   

 ds(a)= βpm(a)em
(а)αpi

(a)dxi+βpm(a)em
(а)αpi

(a)dxi+βpm(a)em
(а)αpi

(a)dxi+βpm(a)em
(а)αpi

(a)dxi=0, 
 

 ds(b)= βln(b)en
(b)αlj

(b)dxj  + βln(b)en
(b)αlj

(b)dxj  +  βln(b)en
(b)αlj

(b)dxj + βln(b)en
(b)αlj

(b)dxj = 0, 
 

 ds(c)= βpm(с)em
(с)αpi

(с)dxi+ βpm(с)em
(с)αpi

(с)dxi + βpm(с)em
(с)αpi

(с)dxi+βpm(с)em
(с)αpi

(с)dxi= 0, 
 

 ds(d) = βln(d)en
(d)αlj

(d)dxj  + βln(d)en
(d)αlj

(d)dxj + βln(d)en
(d)αlj

(d)dxj  + βln(d)en
(d)αlj

(d)dxj}= 0.  (5.4.25)     

 
Substituting the variations (5.4.25) into the expressions (5.4.21) through (5.4.24), we obtain 32 

types of different fields corresponding to the acceleration of local sections of a 23‐m,n‐vacuum region, 

i.e. pseudo-force fields of the void (Figure 5.4.1).      

  

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.4.1. Fractal illustration of accelerated intra-vacuum currents, which determine the manifestations  
of various fields of acceleration of the local area of the "vacuum"  

 
 

As part of the development of the general dynamics of vacuum layers, a series of other possi-

bilities should be considered that may prove useful for solving a number of geometric-dynamic prob-

lems. In particular:  
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1). In § 1.14, from a diagonal quadratic form, for example, with the signature (+ – – –)   

  det
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(5.4.26) 

(where iii gq  ), a linear form was obtained in the form of an А4-matrix  
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(5.4.27) 

In this case, the dynamics of the vacuum layer with the signature (+ – – –) is determined by the 

vanishing of the first variation of the functional of the form  
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i

i
dxqdxqdxq ) = 0.   (5.4.28) 

Similarly, the dynamics of all other vacuum layers of the form (1.14.6) with all possible signa-

tures (1.11.5).  

2). In § 1.15 one regards the Dirac representation of a diagonal quadratic form, for example, 

with the signature (+ + + +) 

                                  ds2 = g00dx0dx0  + g11dx1dx1  + g22dx2dx2  + g33dx3dx3                   (5.4.29)     

in the form of a product of two affine (linear) forms  

ds2 = ds’ds”= (γ0q0dx0’ + γ1q1dx1’ + γ2q2dx2’ + γ3q3dx2’)·(γ0q0dx0”+ γ1q1dx1” + γ2q2dx2”+ γ3q3dx2”)   

where  iii gq  ;                                                                                                                        (5.4.30) 

  represents the objects that satisfy the anticommutative relation of the Clifford algebra  

                                                 η   +   η  = 2 η ,                                                                                (5.4.31)   

The condition (5.4.31) is satisfied, for example, by the following set of Dirac 44-matrices:  
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                                                                                                                                       (5.4.32) 

A variation of the product of two linear forms (5.4.27) is equal to  

                                        (ds’ds”) =  (ds’)ds”+ ds’(ds”).                                        (5.4.33) 

In this case, the dynamics of a vacuum layer with the signature (+ + + +) is determined by the 

expressions   

                         ds’= (γ0q0dx0’ + γ1q1dx1’ + γ2q2dx2’ + γ3q3dx3’) = 0,                      (5.4.34) 

                         ds”= (γ0q0dx0”+ γ1q1dx1”+ γ2q2dx2”+ γ3q3dx3”) = 0.                    (5.4.35) 

Similarly, the dynamics of all other vacuum layers with all possible signatures (5.3.18) is de-

termined.  
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The further development of these directions of vacuum dynamics is left for mathematicians, 

with the certainty that they will be then utilized by physicists.  

 
5.5 Overall dynamics of the metric space with constant curvature [34] 

Consider the generalized metric  

                                                        ds2 = gijdxidxj,                                                                                       (5.5.1)                  

with any signature whose components of the metric tensor are independent of time  

                                                          gij = const .                                                           (5.5.2) 

 We rewrite the quadratic form (5.5.1), selecting the components with zero indices:  

                                         ds2 = c2g00 dt2 + 2cg0 dxdt + g dxdx,                                    (5.5.3) 

where ,  = 1, 2, 3; dx0 = dt. 

 To the right-hand side of (5.5.3) we add and subtract the square of the quantity 

                                                                                                                              (5.5.4) 

 As a result, we obtain [34]  

                                             (5.5.5) 

 whence for an curved area of a 4-dimensional space we have an analog of proper time [34]  

                             или   .                (5.5.6) 

The second term in (5.5.5) is the square of the distance between two points in a 3-dimensional 

metric space  

              dl2 = – (g  – ) dxdx    or    dl2 =  dxdx ,                                  (5.5.7)                  

where a 3-dimensional metric tensor 

                                                                                                            (5.5.8) 

The expression (5.5.5) with allowance for (5.5.6) and (5.5.7) takes the invariant form  

 

                                                          ds2 = с2dτ2  – dl2,                                                                  (5.5.9) 

 

corresponding to a reference system in which the local region under investigation of one of the sides of 

the vacuum region is at rest.  
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Now we can introduce the 3-dimensional velocity of the local region of the vacuum layer, 

whose metric-dynamic properties are given by the components of the metric tensor (5.5.2) [34]  
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cdl
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.                        (5.5.10)                 

Covariant components of the velocity vector  are determined by the expressions [34]  

                                                     v = g v,      v2 = vv.                                                                 (5.5.11)           

Taking into account (5.5.10), the stationary metric (5.5.3) can be represented in the form 

                                        ds2 = g00(dx0 – g dx)2(1– v2/c2),                                           (5.5.12)                  

where a 3-dimensional vector has been introduced 

                                                                       
00

0

g

g
g 
  .                                                        (5.5.13)           

The components of the 4-velocity ui=dxi/ds, taking into account (5.5.12), are equal to [34]          

                         .                            (5.5.14) 

To determine the acceleration of the local portion of the vacuum layer, we use the equation of 

the geodesic (5.2.15). 

 We find the Christoffel symbols (5.2.16) for the case under consideration [34]  

    Г 00 = ½ g00
;                                                                                                              (5.5.15) 

    Г 0 = ½ g00 (g; – g;) – ½ g  g00
;                                                                          (5.5.16) 

    Г  =  + ½ g00[g (g;  – g;) + g (g;  –  g;)] + ½ g  g  g00
;,                      (5.5.17) 

where 

g;   indicates a covariant derivative, which in this case coincides with the usual partial derivative [34] 

                                              







 x
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x

g
g k

k 






; ;                                              (5.5.18) 

   is a 3-dimensional Christoffel symbol composed of the components of the metric tensor g   just 

as Г ikl  is composed of the components of gik . 

In these expressions, all tensor actions (covariant differentiations, raising and lowering indices) 

are performed in a 3-dimensional space with the metric g over the 3-dimensional vector g  and the 

scalar g00.  

Substituting expressions (5.5.15) through (5.5.17) into the equation (5.2.5), we obtain [34]  

                                 du/ds= – Г00
(u0)2 – 2 Г0 

u0u – Гuu                                                    (5.5.19)  

and, using the expressions (5.5.14) for the components of 4-velocity, after the transformations we have  
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              .              (5.5.20)      

 

The acceleration is the derivative of 3-dimensional velocity at the proper time, determined by 

means of three-dimensional covariant differentiation [34]  

 

                       .                        (5.5.21)  

      

Taking into account (5.5.17) for the 3-dimensional acceleration of the local stationary section 

of the vacuum layer with the metric (5.5.1) and the components of the metric tensor (5.5.2), and omit-

ting the index  for convenience, we finally have [34]  

 

                          ,                           (5.5.22)    

    

or in the vector form [34]  

                           ,                            (5.5.23)        

where  is the three-dimensional vector with components 
              

(5.5.24) 
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                                              (5.5.25)     

 

is the vector of 3-dimensional velocity of the local section of the vacuum layer.  

We note once again that the acceleration vector (5.5.23) with the components (5.5.22) was ob-

tained under the condition that the component of the metric tensor gij is stationary (i.e., not depending 

on time х0 = t) {see (5.5.2)}. 
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5.6 The vectors of the field strength and induction of the vacuum layer  

Consider the vector expression (5.5.23)         

                           .                             (5.6.1)        

We introduce the notation  

                                               Ev = –  grad  ,       Bv = /с ,                                   (5.6.2)        

                        where  

                                ,     ,     .                                       (5.6.3)        

In this case, the acceleration vector (5.6.1) becomes 

                                                               a = Ev + [v  Bv],                                                        (5.6.4)        

Let us compare the acceleration vector with the Lorentz force    

                                                   Fl = qE + q[v  B],                                                        

                                         or 

                                                    Fl /q = E + [v  B],                                                    (5.6.5) 

where  

E is the electric field strength vector;  

B is the induction vector of the magnetic field;  

q is the charge of the particle.  

In an obvious analogy, expressions (5.6.4) and (5.6.5) allow us to consider the vectors (5.6.2) in 

the following way:         

         Ev is the vector of the field strength of a vacuum layer with components
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              (5.6.6)        

 

Bv is the induction vector of a vacuum layer with components   
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Fig. 5.6.1 The motion of the refer-
ence frame К with relative to the 
stationary reference frame K [6] 

 Vectors Ev and  Bv  describe the dynamic steady state of the local area of the vacuum layer 

whose metric-dynamic characteristics are determined by the metric (5.5.1) with the stationary compo-

nents of the metric tensor (5.5.2).                  

To clarify the physical meaning of the vectors Ev and Bv, 

we consider an arbitrary motion of an affine space (i.e., the refer-

ence frame) K (t,x,y,z) with respect to the affine space  (i.e., the 

reference frame) K(t,x,y,z) at rest (Figure 5.6.1) .  

It is evident from Figure 6.1 that the radius vectors r and r 

defining the position of the point M in the systems K and K, re-

spectively, are connected by the relation  

                                r = r0 + r                                 (5.6.8)             

          or             ix + jy + kz = r0 + i x + j y + k z,            (5.6.9)  

where i , j , k are the orthogonal unit vectors defining the direc-

tions of the axes of the motionless affine space K with stignature {+ + + +}; 

i, j, k are the orthogonal unit vectors defining the directions of the axes of the mobile affine space K 

with stignature {+ + + +}.   

The velocity of the point M (belonging to an affine space K) with respect to the system K for           

t = t is obtained by differentiating both sides of (5.6.8) [25]  

                                                       va =  dr/dt  = dr0 /dt  +  dr /dt ,                                           (5.6.10)              

while taking (5.6.9) into account we have  

                       va = v0 + (x di/dt + y dj/dt + z dk/dt) + (idx/dt + jdy/dt + kdz/dt).       (5.6.11)                   

The unit vectors i, j, k belonging to the mobile affine space K may change with relative to 

the affine space K only due to its rotation around the point О with angular velocity. Therefore, the 

derivatives with respect to time of  i, j, k are equal to the linear velocities of the endpoints of these 

vectors under rotation of the system K [25]  

                            di/dt = [   i],     dj/dt = [  j],     dk/dt =[  k].                 (5.6.12)                   

Substituting (5.6.12) into (5.6.11), we obtain    

                                 va = v0 + [  r] + (idx/dt + jdy/dt + kdz/dt).                                 (5.6.13)                        

The acceleration of M relative to the frame K at t = t  is equal to [25]  

                                               а = dva /dt = аr + аe + аk ,                                               (5.6.14)                    

           where 

                                    аr = (id2x/dt2 + jd2y/dt2 + kd2z/dt2)                                     (5.6.15)                    

is the relative acceleration;  
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                                    ае = dv0/dt + [d/dt  r] + [  [  r]]                                (5.6.16)                    

is the proper acceleration.  

                                                          аk  = 2[  vr]                                                      (5.6.17)                     

is the Coriolis acceleration. 

We rewrite expression (5.6.14) for the stationary case dv0/dt = 0 and [d/dt  r] = 0 in the fol-

lowing form:  

                                                    а = аpс + 2[  vr],                                                    (5.6.18) 

where  

                  аpс = (id2x/dt2 + jd2y/dt2 + kd2z/dt2) + [  [  r]]                          (5.6.19) 

is the stationary relative proper acceleration of a mobile affine space. 

Taking into account the relation known in analytic geometry, the expression (5.6.18) can be 

represented in the form  

                                                  [  vr] =  – [vr  ],                                                   (5.6.20) 

Equation (5.6.18) can be expressed in the form      

                                                   а = аpс – 2[vr  ].                                                      (5.6.21) 

Comparing the acceleration of the affine space K in the neighborhood of the point M (5.6.21) 

with the acceleration (5.6.4) a = Ev + [v  Вv], the following analogy is found:    

                                            Ev  аpс,     Bv  – 2,     v  vr .                                        (5.6.22) 

Thus, it turns out that with respect to the affine space at rest (i.e., the reference frame) K (x,y,z): 

 the vector of the strength of the vacuum layer Ev is identical to the proper acceleration with torsion аpс 

of  the local part of the mobile affine space K  in a neighborhood of the point M ;  

 the vector of the induction of the vacuum layer Bv is identical to the double of the stationary angular 

velocity of the rotation  of the same region of the mobile affine space K ;  

 the velocity vector v corresponds to the speed of a constant moving vr of the same section of the affine 

space K with respect to the affine space K.             

Within the framework of the Algebra of Signatures, each of the reference systems K (t, x, y, z) and          

K (t, x, y, z) can have any of the 16 possible stignatures {see (1.8.2)}   
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31211101

30201000

)(a
iestign ,                        (5.6.23) 

 

therefore there are 256 possible variants of motion of two affine layers relative to one another.  
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5.7 The vectors of tension and induction of a 2k-m,n-vacuum region 

In point 5.5 we give information well known to field theory specialists [34]. We now consider    

23-m,n-vacuum regions within the framework of the Algebra of Signatures.  

We rewrite the expression (5.2.22) in the form  

                                       
ds

dx

ds

dx
iГ

ds

dx

ds

dx
Г

ds

xd ji
l
ij

ji
l
ij

l
)()(

2

2
  ,                                    (5.7.1) 

where a consideration of the previous paragraph shows that, for the simplest level in Alsigna, the ac-

celeration of the steady state bilateral curved 23-m,n-vacuum region has the form  

                                                                   a(±) = a(–)  + ia(+)                                                                                   (5.7.2) 

where  

  a(–) is the acceleration vector (5.5.23) into which the corresponding components of the metric tensor of 

subcont gij
(–) are substituted (5.1.6);               

  a(+) is the acceleration vector (5.5.23) into which the components of the antisubcont metric tensor gij
(+) 

are substituted (5.1.8).           

The complex numbers of the expression (5.7.2) indicate that the vectors a(–) and a(+) are mutual-

ly perpendicular.  

For the stationary case, the vector expression (5.7.2), taking (5.6.4) into account, takes the form  

                                  a(±) = Ev
 (–) + [v(–)  Bv

 (–)]  +  i(Ev
 (+)

 + [v(+)  Bv
 (+)]),                      (5.7.3) 

                    or 

                               a(±) = (Ev
 (–) + iEv

 (+)) + ([v(–)  Bv
 (–)] + i[v(+) Bо

(+)]).            

Similarly, considering the level of the 26-m,n-vacuum region based on (5.3.14), we obtain  

 

                                            a(16)
 = η1 a(1)    +  η2 a(2)   +  η3 a(3)   +  η4 a(4)    +                               (5.7.4) 

                                                   + η5 a(5)   +  η6 a(6)   +  η7 a(7)   +   η8 a(8)    +   

                                              + η9  a(9)   +  η10a(10) + η11a(11)  +  η12a(12)  +   

                                              + η13a(13) + η14a(14)  +  η15a(15)  +  η16a(16) ,  

   where  

a(q)  is  the acceleration vector (5.5.23) into which the corresponding components of the metric tensor 

gij
(q) (5.3.2), with the corresponding signature from the matrix (5.3.3), are substituted.           

For the stationary case, the vector expression (5.7.4) with allowance for (5.6.4) can be repre-

sented in the form  

                                             .])[(
16

1

)()()(
)16( 




q

q
v

qq
vq BvEa

                                         (5.7.5) 

The total dynamics of the following stationary 210-m,n-vacuum region and the dynamics of all 

subsequent deeper polyhedral vacuum layers off to infinity {see § 1.16} can be developed analogously.  
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5.8 Metric-dynamic models of the «electron» and the «positron» 

From the development of the overall dynamics of vacuum layers, we turn to the study of par-

ticular cases of various interactions between vacuum formations.  

 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.8.0. Fractal illustration of a local vacuum formation  

  

First of all, consider the «electron» - «positron» and «electron» - «electron» interaction. To this 

end, we recall {see § 2.6} that within the framework of the light-geometry of a vacuum based on the 

principles of the Algebra of Signatures, the resting «electron» is a stationary (stable) spherically sym-

metric (convex) vacuum formation, which at the level of consideration of a 23-m,n-vacuum region is 

approximately described by a set of 10 metrics with the signature (+   ):  
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                                                     «Electron»                                       (5.8.2)         
Stable vacuum formation with signature  

(+   )  
consisting of the following parts and curved vacuum layers {see (2.6.22)}:  

  
The outer shell of the «electron»  

in the interval [r6, r3] (Figure 5.8.1)  
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The core of the «electron»  
 in the interval [r7, r6] (Figure 5.8.1)  
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Scope of the «electron»  
in the interval [0, )  

                                                 22222222)(
5 sin  ddrdrdtcds  ,                              (5.8.10)        

 
 
 
 

where  
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r3 ~ 4·1018 cm is the radius commensurable with the radius of the core of the «galaxy», inside which  

is the core of the «electron»; if the core of the «electron» is within a biological cell, then  the 

metric r3 in (5.8.2) through (5.8.9) must be replaced by r5 ~ 4.9·10–3 cm {see (2.6.20)}; if the 

core of the «electron» is inside the «planet» core, then for r3 in the metrics (5.8.2) through 

(5.8.9) it is necessary to substitute r4 ~ 1.4·108 cm, etc. {see Figures 2.6.1 through 2.6.3};  

r6  ~ 1.7·1013 cm is the radius of core the of the «electron»;  

r7 ~ 5.8·10–24 cm is the radius of the particelle (inner nucleolus) located inside the core of the «elec-

tron». 

 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.8.1. Outer shell, abyss (rakya), core, particelle (inner nucleolus) and scope  

of a spherical vacuum formation 
 

  

Definition 5.8.1 The abyss (rakya) is a multi-layered spherical boundary (shell) between the core and 

the outer shell of any spherical vacuum formation (Figures 5.8.1 and 5.10.5 through10.8).  

Definition 5.8.2 The scope is a kind of memory of the undeformed state of the spherical area of the 

vacuum region under consideration.  

The resting «positron» is a stationary (stable) spherically symmetric vacuum formation that is 

negative (concave) with respect to the «electron», which, at the level of consideration of the 23-m,n-

vacuum region, is described by a set of 10 metrics with the signature ( + + +):  
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                                                     «Positron»                                       (5.8.11)        

Stable vacuum formation with signature ( + + +) 
consisting of the following parts and curved vacuum layers:  

  
Outer shell of the «positron»  
in the interval [r6, r3] (Figure 5.8.1)  
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                                                        The core of the «positron»  

in the interval [r7, r6] (Figure 5.8.1)  

                         2222

2
6

2
7

2
22

2
6

2
72)(

1 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds 



















 ,                 (5.8.16)     

                         2222

2
6

2
7

2
22

2
6

2
72)(

2 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds 



















 ,                   (5.8.17)     

                        2222

2
6

2
7

2
22

2
6

2
72)(

3 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds 



















 ,                  (5.8.18)    

                        2222

2
6

2
7

2
22

2
6

2
72)(

4 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds 



















 ;                   (5.8.19)      

 
  

Scope of the «positron» 
in the interval [0, )  

 
                                                22222222)(

5 sin  ddrdrdtcds  ,                           (5.8.20)     

where  

r3 ~ 4·1018 cm is the radius commensurable with the radius of the core of the «galaxy», inside which  

is the core of the «positron»; if the core of the «positron» is within a biological cell, then  the 

metric r3 in (5.8.12) through (5.8.19) must be replaced by r5 ~ 4.9·10–3 cm {see (2.6.20)}; if the 
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core of the «positron» is inside the «planet» core, then for  r3 in the metrics (5.8.12) through 

(5.8.19)  it is necessary to substitute r4 ~ 1.4·108 cm, etc. {see Figures 2.6.1 through 2.6.3};  

r6  ~ 1.7·1013 cm is the radius of core the of the « positron»;  

r7 ~ 5.8·10–24 cm is the radius of the particelle (inner nucleolus) located inside the core of the «posi-

tron». 

Within Alsigna, the «electron» and the «positron» may be inserted into the hierarchical set of 

spherical vacuum formations nested like matruschka (Russian nested dolls) (Figures 5.8.2 a  and 5.8.3) 

{See §§ 2.5 through 2.6 and Figure 2.6.2}. But, in order to simplify, we consider the vacuum for-

mation consisting of a sequence of only three of them.                      

                                        a)                                                                          b)  

Fig. 5.8.2. a) Fractal illustration of the sequence of spherical formations nested inside each other;  
                                   b) Fractal illustration of the hierarchy of local vacuum formations 

 

 
Fig. 5.8.3. Fractal illustrations of a sequence of spherical formations nested in each other 

 
 
 
 
 
 



 209

 
5.9 The outer shell of the «electron» and «positron» 

Consider the outer shell of the «electron» (Figure 5.8.1), located inside the nucleus of the «gal-

axy» with a radius r3 ~ 4·1018 cm.  

Near the core of the «electron» r3  >>  r ≈ r3 ~ 4·1018 cm; therefore, in metrics in (5.8.2) through 

(5.8.5), the terms r/r3 can be neglected. In this case, the core of the «electron» can be considered prac-

tically free, and its outer shell can be described with a high accuracy (at the level of consideration of a 

23-m,n-vacuum region) by a set of metrics  

The outer shell of the «electron»  
with signature (+   )  

in the interval [~2.3·1013 cm, ~1018 cm] (Figure 5.8.1)  
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We average the metrics (5.9.1) and (5.9.3), and also (5.9.2) and (5.9.4)  

                                      2
1 (ds1

(+ – – –)2 + ds3
(+ – – –)2);   2

1 (ds2
(+ – – –)2 + ds4

(+ – – –)2),                      (5.9.5) 

As a result, to describe the outer shell of the «electron» we obtain the following set of two metrics  

 

The outer shell of the «electron»  
with signature (+   )  

in the interval [~2,3·1013 cm, ~1018 cm] (Figure 5.8.1)  
  

                           2222

6

2
2262)(

1
2)(

1 sin

1

1  ddr

r

r

dr
dtc

r

r
dsds a 

















   ,           (5.9.6)         

                           2222

6

2
2262)(

1
2)(

2 sin

1

1  ddr

r

r

dr
dtc

r

r
dsds b 



















  ,            (5.9.7)     

       
Similarly, to describe the outer shell of a free «positron» we have  
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The outer shell of the «positron»  
with signature ( + + +)  

in the interval [~2,3·1013 cm, ~1018 cm] (Figure 5.8.1)  
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  ,             (5.9.9)   

 
We note that the averaging procedure for two metrics of the type (5.9.5) corresponds to finding 

the square of the modulus of a complex number of the form (5.1.10) ds (±) = 2
1 (ds1 + ids2). 

Recall also that, for the convenience of describing the intra-vacuum processes in Alsigna, the 

following neologisms are introduced {see Table 2.1.1}:  

   a-subcont is the region, described by the metric (5.9.6) with the signature (+   );          (5.9.10)      

   b-subcont is the region described by the metric (5.9.7) with the signature (+   );           (5.9.11)      

   a-antisubcont is the region described by the metric (5.9.8) with the signature ( + + +);     (5.9.19)  

   b-antisubcont is the region described by the metric (5.9.9) with the signature ( + + +).     (5.9.13)  

 

5.10 Vacuum electrostatics of «electron» and «positron» 

The metrics (5.9.6) through (5.9.7) and (5.9.8) through (5.9.9) are stationary, so we use equa-

tions (5.5.22) and (5.6.1) through (5.6.7) to study the accelerated currents of the intra-vacuum layers 

(5.9.10) through (5.9.13) in the outer shells of the «electron» and of the «positron».  

In the metrics (5.9.6) through (5.9.9), all the mixed components of the metric tensor are zero.  

                                 g0α
 (–a) = 0,     g0α

 (–b) = 0,     g0α
 (+a) = 0,     g0α

 (+b) = 0.                         (5.10.1) 

Therefore, for the case under consideration, equation (5.5.22) takes on the simplified form:  
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is the acceleration of the a-subcont ;  
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is the acceleration of the b-subcont;  
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is the acceleration of the a-antisubcont;  
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                    (5.10.5)          

is the acceleration of the b-antisubcont,  

where it is taken into account that, according to (2.1.48) through (2.1.51),  

                          v(–a)2/c2 = vr
(–a)2/c2 = –r6/r ,         v(–b)2/c2 = vr

(–b)2/c2 = r6/r ,                             (5.10.6)          

                          v(+a)2/c2 = vr
(+a)2/c2 = – r6/r,         v(+b)2/c2 = vr

(+b)2/c2 = r6/r .                                   

Substituting the zero components of the metric tensors from the metrics (5.9.6) through (5.9.9)                

                                   g00
(–a) = 1 – r6/r     and    g00

(–b) = 1+ r6 /r ,                                  (5.10.7)          

                                   g00
(+a) = –1 + r6/r   and   g00

(+b) = –1– r6 /r                                  (5.10.8)    

into the corresponding expressions (5.10.2) through (5.10.5), in spherical coordinates we obtain:  

 the components of the vector of the a-subcont tension (i.e., of the vector of the acceleration of 
the a-subcont):  
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 the components of the vector of  the b-subcont tension (i.e., of the vector of the acceleration of 
the b-subcont):  
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 the components of the vector of  the a-antisubcont tension (i.e., of the vector of the acceleration 
of the a-antisubcont):  
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 the components of the vector of  the b-antisubcont tension (i.e., of the vector of the acceleration 
of the b-antisubcont):  
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We define the acceleration vector of the subcont in the outer shell of the «electron» in the same 

manner as the vectors (5.7.2)  (5.7.3)  

 

                                                    a(–) = a(–a)  + ia(–b) = Ev
(–a) + iEv

(–b).                                        (5.10.13)  

          

Taking into account (5.10.9) and (5.10.10), the components of the given vector are equal to  
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                                           (5.10.14)               

 

Similarly, the acceleration vector of the antisubcont in the outer shell of the «positron» is equal to  

 

                                              a(+) = a(+a)  + ia(+b) =  Ev
(+a) + iEv

(+b).                                       (5.10.15)           

 

Taking into account (5.10.11) and (5.10.12), the components of the given vector are equal to  
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а) 

 
б) 

Fig. 5.10.1. a) A schematic illustration of the 
flow of the a-subcont into the abyss (rakya), 
surrounding the core of the «electron», and 
the flow of the b-subcont away from it  
b) Fractal illustration of the abyss (rakya), 
surrounding the core of the «electron»  
 

 

Fig 5.10.2. Illustration of the light landscape, 
the geodesic lines of which are curved rays of 
light in a curved «vacuum» 
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   (5.10.16)               

 
When r >> r6, the acceleration (5.10.14) assumes 

the approximate form  
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Whereas in classical electrostatics, the electric 

field strength of a point-like electron in a vacuum is de-

termined by the expression:  
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                 (5.10.18)    

where  е = –1.6021910–19 C is the electron charge, and   

0 = 8.8541910–12 F/m is the vacuum permittivity.   

Comparing (5.10.17) and (5.10.18), we find the 

correspondence                                                                       
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,         (5.10.19)    

where it is seen that the meaning of the electron charge e 

corresponds to the radius of the neck with a radius of            

r6 ~ 2.810–13 cm. (Figures 5.8.1 and 5.10.1), from which 

the a-subcont flows to all directions with deceleration 

(5.10.9), and to which the b-subcont flows from all direc-

tions with acceleration (5.10.10).   

Let's summarize the interim result. Alsigna intro-

duced the concept of mobile continuous pseudo-media:   

a-subcont, b-subcont, a-antisubcont and b-antisubcont.  

Do these pseudo-media have a physical existence? 

Alsigna is so far silent on this point. But if acceleration is 

mathematically determined, for example in (5.10.9), then 

inevitably there arise the questions: "acceleration of 

what?" and “with respect to what is the acceleration?”  
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Alsigna tends to indicate that the interlacing of mobile intra-vacuum layers (pseudo-media) is 

only an illusory effect, similar to how we represent, for example, the seaside. Different types of entities 

are deemed substantial for purely technical purposes, but when considering the philosophical questions 

of ontological and epistemological nature about spatially extended Being, it is possible to disregard 

such burdensome data, since Alsigna does not see anything except the curved light-geometric pattern 

of the void. 

So, considering the level of a 23-m,n‐vacuum region, the above mathematical apparatus allows 

us to create the following visual interpretation of intra-vacuum processes in terms of continuous pseu-

do-media.  

In the outer shell surrounding the core of the «electron» with a radius r6 ~ 2.8·1013 cm, there 

are two opposing radial currents:  

- the a-subcont flowing in all directions away from the nucleus [with a deceleration (5.10.9)], 

and  

- the b-subcont incoming from all sides towards the core [with acceleration (5.10.10)].  

Along each radial direction, these opposing currents (intra-vacuum currents) form a two-sided 

helix (Figure 5.10.3).  

 

 

 

 

     
 

a)          b)       c)  
 

Fig. 5.10.3. a) Spirals consisting of flowing inbound a-subcont and outbound b-subcont currents in the outer shell of the «elec-
tron»; b, c) Fractal illustrations of intertwined currents around a spherical object (in particular, around the core of an «electron»   
or the core of a «positron») 
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Definition 5.10.1. The intra-vacuum current is a local 

current of the pseudo-medium (a-subcont and/or b-subcont  

and/or a-antisubcont and/or b-antisubcont) which spirals around 

one of the radial directions.   

A suitable analogy of such a spiral is a multi-twisted rib-

bon (Figure 5.10.4), on one side of which the b-subcont flows 

towards the core of the «electron» with an acceleration, and on 

the other side of the same ribbon the a-subcont flows away with a 

deceleration in opposite direction.  

In this case, according to (5.10.6), the b-subcont that 

comes towards the abyss (rakya) at each point at a distance r 

from the center of the core of the «electron» has a radial velocity 

component  

                                                   vr
(–b) = – (c2r6/r)½,                                                       (5.10.20)    

 

and the a-subcont flowing from the abyss (rakya) at the same points has a velocity  

 

                                                                vr
(–a) = (c2r6/r)½.                                                         (5.10.21)    

 

These speeds compensate each other on the average  

 

                                               vr
(–b) + vr

 (–a) = – (c2r6/r)½  +  (c2r6/r)½ = 0,                                 (5.10.22)    
 
 
however, the joint acceleration of twisted a-subcont and b-subcont intra-vacuum currents is (5.10.14)  
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                                                                 (5.10.23)   

We note the following aspects and consequences arising from the above mathematical model:  

1. The velocities (5.10.20) and (5.10.21) and the acceleration (5.10.23) are determined with 

respect to the resting scope of the «electron», whose metric-dynamic properties are given 

by the quadratic form (5.8.10). The change in the «electron» scope (for example, by tran-

sition to another coordinate system) can lead to instability of the vacuum formation.  

          

Fig. 5.10.4. Multi-twisted ribbons, 
on one side of which the b-subcont 
accelerates, and on the other side in 
the opposite direction, a a-subcont 
decelerates 
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2. In classical quantum electrodynamics, the effect of polarization of a physical vacuum 

around a point charge is taken into account, which allows quantum theorists to introduce 

concepts of an effective electric charge  
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where me is the electron mass and ћ is the Planck constant.  

The electric field strength around the effective charge acquires the form  
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In comparing expressions (5.10.23) and (5.10.25), taking into account (5.10.16), we again 

find an obvious analogy  
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                            (5.10.26)    

 

which allows us to state that the fully geometricized vacuum electrostatics of Alsigna 

permits us to more harmoniously substantiate the logical constructions of quantum elec-

trodynamics.  

3. At r ≈ r6  (i.e., in the region of the outer side of the abyss (rakya) of the «electron»,              

Figure 5.8.1), the velocities of the flows of the a-subcont (5.10.20) and of the b-subcont 

(5.10.21) tend to the speed of light c. It follows that the speed of light is the limiting ve-

locity of the flow of intra-vacuum layers. It will be further shown that an attempt to fur-

ther increase the speed of movement of local sections of intra-vacuum layers only leads to 

a topological rearrangement of this «vacuum» region.  

4. The acceleration of the subcont (5.10.23) in the same area at r ≈ r6 tends to infinity. Re-

call that according to (2.1.14) through(2.1.33), the relative elongation of the subcont in 

the outer shell of the resting «electron» is equal to (2.1.33): 
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from which it can be seen that in the region of the abyss (rakya) (r ≈ r6), the radial com-

ponent   also tends to infinity. Together, expressions (5.10.23) and (5.10.27) show 

that in the approximation under consideration the core of the «electron» is surrounded by 

a practically impenetrable (i.e., extremely compressed and resistive shell) abyss (rakya) 

(Figure 5.10.5).  

 
 

Fig. 5.10.5. Outer shell, multilayered abyss (rakya), core and particelle (internal nucleolus) of a 
spherical vacuum formation (in particular, of an «electron» or a «positron») and its fractal illustrations  

 
However, on closer examination it turns out that the abyss (rakya) is a much more complex, 

multi-layered, flexible and permeable region enveloping the core of the «electron». A deeper 

analysis shows that the abyss (rakya) of an «electron» is similar to the membrane of a biolog-

ical cell, or to the surface of a planet, or to the surface of a star (Figures 5.10.5).  

5. In classical electrostatics electric field potential around a charge qе with strength (5.10.18) is 

given by  
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and the potential energy between two spheres with radii r1 and r2, equal  
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In Alsigna the role of the electric field performs the acceleration, so by analogy with (5.10.28) 

we define the potential subcont tension  

                                                  dradrE rvr
)()()(                                           (5.10.30)    

Thus, taking into account (5.10.14) the potential subcont tension in the outer shell of the «elec-

tron» equal  
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     (5.10.31)                 

where we have used the tabulated integral 
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                         (5.10.32)    

The graph of the function (5.10.31) is shown in Figure 5.10.6.  

                       
Fig. 5.10.6. Graph of potential subcont tension (5.10.31) 

The calculations are performed using the MathCad software,  
when r6 = 2,7·10–13 cm,  с = 2,9·1010 см/с, С = 0 

 
Potential subcont tension inside the core of the «electron» (discussed in the following § 5.11), 

with account of (5.11.32) equal to  
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where we have used the well-known integral 
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The graph of the function (5.10.33) is shown in Figure 5.10.7. 
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Fig. 5.10.7. Graph of potential subcont tension (5.10.33) 

The calculations are performed using the MathCad software  
when r6 = 0.27 cm,  с = 2.9·1010 см/с, С = 0 

 
 

6. A similar analysis of the metrics (5.8.12) through (5.8.15) and (5.9.8) through (5.9.9), tak-

ing into account the accelerations (5.10.4) through (5.10.5) and the velocities (5.10.6), 

shows that the «positron» is a negative copy of the «electron». If the free «electron» is 

conventionally called a stable convexity in the vacuum region with the signature (+ ), 

then the «positron» is a similar concavity with the opposite signature ( + + +).  

7. If, in the equations (5.8.1) through (5.10.27) instead of the triplet of radii r3, r6, r7 {see the 

hierarchy of radii (2.6.20)}, one substitutes any other triple of radii from the same hierar-

chy, for example, r4, r6, r8    or   r2, r6, r7    or   r1, r6, r8    or   r2, r6, r9   etc., then one obtains 

the metric-dynamic models of various types of «electrons» («electrons»468, «electrons»267, 

«electrons»168, «electrons»269, ...) and «positrons» («positrons»468, «positrons»267, «posi-

trons»168 , «positrons»269, ...), which differ in the structure of the abyss (rakya).  

8. If, in the equations (5.8.1) through (5.10.27) instead of the triplet of radii r3, r6, r7, one sub-

stitutes any other triple of radii from the hierarchy of radii (2.6.20), for example, r2, r4, r5  

or r1, r3, r5   or   r1, r4, r6   or   r4, r5, r7  etc., one obtains similar «electron» and «positron» 

metric-dynamic models respectively of a naked (see Definition 5.10.2): «planet», «gal-

axy», «star», «biological cell» and so forth. 

  Definition 5.10.2. A naked vacuum formation is a stable curvature of the vacuum region of 

any scale («electron», «biological cell», «planet», «star», «galaxy», etc.) whose metric-dynamic model 

is determined by a set of metrics of the type (5.8.1) through (5.8.20) as is shown in Figure 5.8.1. Many 

smaller vacuum formations can be attracted to a naked vacuum formation. For example, many small 

«particles» can be attracted to the nucleus of a naked «planet»: «biological cells», «atoms», «elemen-

tary particles», etc. (Figure 5.10.8 b).   
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a) b)   

 
Fig. 5.10.8. a) Fractal illustration of the multilayered abyss (rakya) surrounding  
the core of vacuum formation; b) Fractal illustration of the set of local vacuum  

formations around the core of a larger naked stable vacuum formation  
 

9. The mathematical apparatus developed here is suitable for describing any stable naked vac-

uum formations with different sizes (Figure 5.10.9). Therefore, studying one of the local 

vacuum formations, for example, an «electron» - «positron» pair, we simultaneously  ob-

tain information about: the metric-dynamic properties of a pair of male and female «bio-

logical cells», a naked «star»-«planetary» system, etc. Conversely, by studying, for exam-

ple, the metric-dynamic properties of a naked «planet», we also know the properties of the 

«electron» or the «positron» (see Figures 5.10.9 and 5.10.10).  

 

 

 

 

 

  

 

 

 

                                 a)                                                 b)                                              c)                                    
Fig. 5.10.9. Shells: a) stars; b) a biological cell; c) «electron». 

Upon closer examination through the pores in the abysses (rakyas), a mutual correspondence is                                        
found between the core and the outer shell of any stable vacuum formation 
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Fig. 5.10.10. Fractals often surprisingly accurately reflect a speculative picture of the world which is 
inaccessible to sensual human perception. 

 
5.11 The core of the «electron» and «positron» at rest 

We consider the metrics (5.8.6) through (5.8.10), describing the metric-dynamic state of the 

core of the «electron», turning our attention to the 23-m,n-vacuum region 

The core of the «electron»  
in the interval [r7, r6] (Figure 5.8.1)  
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Scope of the «electron»  
in the interval [0, )  

 i                                               22222222)(
5 sin  ddrdrdtcds  ,                               (5.11.5)        

 
where  r6 ~ 1.7·10–13 cm is the radius of core the of the «electron»; r7 ~ 5.8·10–24 cm is the radius of the 

particelle (inner nucleolus) located inside the core of the «electron».  
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First, taking into account the inequality r6  >> r7  we neglect the terms r7 /r; under this condition, 

the metrics (5.11.1) through (5.11.4) are reduced to two de Sitter metrics:  
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The arithmetic mean of these metrics forms a 2-braid {see (2.2.24)}: 
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 and (2.2.24) through (2.2.25)}, we find the relative elon-

gation of the subcont within the core of the «electron»  
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where the averaged components of the metric tensor )(
iig  

are taken from the 2-braid (5.11.8)  
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Substituting the components (5.11.10) and (5.11.11) 

into (5.11.9), we obtain   
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                     0)( 
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The graph of the function (5.11.12) is shown in 

Figure 5.11.1, from which follows that the subcont on the 

periphery of the core of the «electron» is strongly 

stretched, whereas in the middle of the core the stretching 

of the subcont is virtually absent.  

 

Fig. 5.11.1 The graph of the relative 
lengthening of the subcont (5.11.12) inside 
the core of the «electron» 
 

       

Fig. 5.11.2 Rotating core of               
a vacuum formation 
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According to the expressions (2.2.27) through (2.2.28), the velocities of the flow of the              

a-subcont and b-subcont are equal, respectively, to  

                                                                     vr
 (–a) =   cr/r6 ,                                                       (5.11.15)                  

                                                         vr
 (–b) = – cr/r6 .                                                      (5.11.16)                  

The given velocities in the center of the core of the «electron» (i.e., when r = 0, Figure 5.11.2) 

are zero, and on the periphery of the core with the radius r ≈ r6, they are near the speed of light c. More 

precisely, the periphery of the core is rotated in a complex manner at the speed of light; therefore the 

radial lines of the a-subcont and of the b-subcont currents for an outside observer look like spiral arms 

(Figure 5.11.2 and 5.11.5).  

We bring into consideration the metrics (5.11.1) – (5.11.4). Averaging the data of the metric  

                                           ,
4
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 we obtain the 4-braid  
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Substituting the components of the metric tensor from the 4-braid (5.11.18) and the scope 

(5.11.5) into the expressions (5.11.9), we find in this case a relative lengthening of the subcont within 

the core of the «electron» 
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The graph of the function (5.11.19) is shown 

in Figure 5.11.3. From this graph it can be seen that 

the subcont is strongly stretched not only on the pe-

riphery, but also in the center of the core of the 

«electron» (Figure 5.11.2), where its particelle (inner 

nucleolus) {i.e. the "proto-e– quark"} is found.  

 

Fig. 5.11.3 The graph of the relative lengthening 
of the subcont (5.11.19) inside the core of the 
"electron". The calculations were performed us-
ing MathCad 14 software with r6 = 10 and r7 = 
0.01. At r6 = 2·1013 and r7 = 6·1024, the result-
ing graph will be similar, but the wavelet in the 
middle will be barely noticeable. 
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We obtain, analogously, the velocities of the intra-vacuum layers inside the «electron’s» core 

{see (2.1.48) through (2.1.51)} 

 
 I    для а-субконта (5.11.1)   1– r7/r + r2/r6

2 = 1– vr
(–a)2/c2   →   vr

(–a) = c(– r7
,/r, + r2/r6

2)1/2    (5.11.22)    
 
H   для b-субконта (5.11.2)   1+ r7/r – r2/r6

2 = 1– vr
(–b2/c2    →   vr

(–b) = c(r7/r – r2/r6
2)1/2         (5.11.23)   

 
V   для c-субконта (5.11.3)   1– r7/r – r2/r6

2 = 1– vr
(–c)2/c2    →   vr

(–c) = c(– r7/r – r2/r6
2)1/2      (5.11.24)   

 
H    для d-субконта (5.11.4)  1+ r7/r + r2/r6

2 = 1– vr
(–d)2/c2   →   vr

(–d) = c(r7/r + r2/r6
2)1/2         (5.11.25)   

     
 When r ≈ r6  (i.e., around the periphery of the core of the «electron»), all velocities (5.11.22) 

through (5.11.25) tend to the speed of light c. Similarly, at r  ≈  r7 (i.e., in the area of the abyss (rakya) 

of the particelle (inner nucleolus), all velocities (5.11.22) through (5.11.25) tend to the speed of light c 

too.  

Thus, on the level  of the 23-m,n -vacuum region inside the 

core of the «electron»,  on each radial direction  four  intra-

vacuum flows (currents) are coiled.  

Two of these helical currents (the b-subcont current and 

the c-subcont current) flow from the periphery of the core of the 

«electron»  initially at a speed close to that of light, then slowing 

down, and then nearby the abyss (rakya) of the internal particelle 

(inner nucleolus) again accelerating to the speed of light.  

Two other oncoming helical currents (the a-subcont cur-

rent and the d-subcont  current) flow from the abyss (rakya) of the 

internal particelle (inner nucleolus), first at a speed close to the 

speed of light, then slowing down, and then at the periphery of the 

«electron’s» core again accelerating to a speed close to the speed 

of light (Figure 5.11.5).  

In § 5.10 it was noted that, for clarity, it is convenient to assume that the oncoming a-subcont 

and b-subcont currents flow along the two sides of the same twisted ribbon (Figure 5.10.4). Having the 

4-braid composed of the four intra-vacuum currents, we can continue the comparison with the ribbon, 

and we may assume that the given four currents flow on four sides of a repeatedly twisted parallelepi-

ped (Figure 5.11.4).  

However, for an outside observer, the periphery of the core of the «electron» and its inner pe-

riphery of its particelle (inner nucleolus)  rotate  at a speed close to the speed of light in a complex 

manner (Figures 5.11.2 and 5.11.5).  

                

Fig. 5.11.4 A multiply-twisted quadri-
lateral, on one side of which an a-
subcont is accelerating, on the other 
side a b-subcont flows, on the third 
side a c-subcont flows, and on the 
fourth side a d-subcont flows 
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Fig. 5.11.5 Fractal illustration of interwoven intra-vacuum currents around a 

radial direction both inside as well as outside the rotating core of the «electron» 
 

 

We define the radial components of acceleration vectors in intra-vacuum layers of the core of 

the «electron» with the help of equations (5.10.2)  
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The remaining components of these vectors are equal to zero, similar to (5.10.9) through 

(5.10.12).     

Substituting into equation (5.11.27) the corresponding components of the metric tensors )(
11
тg 

from the metrics (5.11.1) through (5.11.4) and the radial velocity components (5.11.22) through 

(5.11.25), we obtain  
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                                                                                                                                                   (5.11.28) 
 

In this case, the total radial acceleration of the subcont between the periphery of the core of the 

«electron» and the abyss (rakya) of its internal particelle (inner nucleolus) is given by the quaternion 

(see § 5.7) 

                               a(–) = a(–a) + ia(–b) + ja(–c) + ka(–d)  = )( a
ra  +i )( b

ra  +j )( c
ra  +k )( d

ra 
, 

                        (5.11.29)        

  

which describes the interweaving of 4 intra-vacuum currents around each radial direction (Figures 

5.11.5, 5.11.5 and 5.11.7). 

The module of the vector of the total radial acceleration of subcost equal 
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Fig. 5.11.6 Illustration of interlacing of accelerated intra-vacuum currents  
wound around one radial direction 
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Fig. 5.11.7 Fractal illustrations of various aspects of a representation  
of a spherically symmetrical local vacuum formation 

 
 
 

If in expressions (5.11.28) to neglect the terms the r7/r, we obtain: 
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The total acceleration of subconts in the core «electrons» in this case is equal to 
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                                                                                                                                       (5.11.32) 

The core of the «positron» at rest, at the level of the 23-m,n-vacuum region that we are consid-

ering, is a negative copy of the core of the «electron», as is easily verified by performing a similar 

analysis with the use of metrics (5.8.16) through (5.8.20) and expressions of the type (5.11.6) through 

(5.11.32).              

In the study of the core of the «electron» at the level of consideration of a 26-m,n-vacuum re-

gion, each metric (5.11.1) through (5.11.5) can be represented as a sum of seven metrics with signa-

tures from the left rank (1.13.1) or (5.11.33) 

  
 
 
  

 

   

 

 

 

For example, the metric (5.11.1) with the signature (+ – – –)   
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is represented as the sum of seven analogous sub-metrics with the signatures (5.11.33):    
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In the study of the "positron" core at the level of consideration of the 26-m,n-vacuum region 

each metric (5.8.16) through (5.8.20) is represented as the sum of seven analogous metrics with signa-

tures from the right rank (1.13.1) or (5.11.34).  

For example, the metric (5.8.16) with the signature (– + + +) 
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is represented as the sum of seven sub-metrics with the signatures (5.11.34)  
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                                                                                                                                       (5.11.36) 

 

Mathematical techniques for the analysis of metrics of the type (5.11.35) or (5.11.36) at the 

level of consideration of a 26-m,n -vacuum region remains the same as on the level of consideration of 

the 23-m,n-vacuum region. However, in this case we have much more subtle and intricately woven in-

tra-vacuum currents (Figure 5.11.8), the number of which is increased by 7 times.  

 

Fig. 5.11.8. Fractal illustrations of the interweaving of intra-vacuum currents 
at the level of consideration of a 26-m,n-vacuum region 

 
 

At the level of consideration of a 210-m,n-vacuum region each of the seven metrics (5.11.35) or 

(5.11.36) can be represented as a sum of seven other metrics with the respective signatures, etc. (see       

§ 1.16). Thus, subject to the following paragraph, the Algebra of Signatures (Alsigna) offers a mathe-

matical apparatus that allows one to look into the depth of a vacuum.   
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Fig. 5.11.9. Alsigna provides the ability to dive into Infinity with the use of mathematical apparatus, 
which is consistent with the Doctrine of the Sefirot Tree and other fundamental principles of Lurianic 
Kabbalah (i.e., the Internal TORAH) 

 

5.12 Isospin of the cores of the «electron» and «positron» at rest 

We recall that a quadratic form with any of the possible signatures of ranks (5.11.33) through 

(5.11.34), represented in diagonal form [for example, metrics (5.11.35) and (5.11.36)], can in many 

ways be written as the determinant of a second-rank spin tensor (see § 1.14).  

For example, the diagonalized quadratic form with signature  

                          ds2 = g00dx0dx0 – g11dx1dx1 – g22dx2dx2 – g33dx3dx3                              (5.12.1) 

is the determinant of one of the 22 Hermitian matrices (spin tensors )  
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which can be represented as an А4 -matrix  
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where                                                                                                                                         
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is the set of Pauli matrices.  
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Similarly, for a diagonalized quadratic form with inverted signature (– + + +), we have one of 

the variants of its representation in the form of an А4-matrix:  
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где
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is the set of Cayley matrices.  

Suppose that all elements of length dxi are equal to one (dxi =1), then the А4-matrices (5.12 3) 

and (5.12.6) take the form 
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For example, let us represent the metric (5.11.1) in the form of the determinant of a spin tensor 

of the type (5.12.5)      
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We write down this spin tensor, taking into consideration that dxi =1:  
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 We also note that any binary event with the probability of its outcome being ½ (e.g., the rota-

tion of a ball clockwise or counterclockwise, coins landing on heads or tails) may be described as 

spinors. For example, the clockwise rotation is formally described by spinors (i.e., "bra" and "ket" vec-

tors)                                                                                          
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In this counter-clockwise rotation is formally defined by spinors                               
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At the level of consideration of a 23-m,n-vacuum region inside the core of the «electron», there 

are four intra-vacuum layers (5.11.1) through (5.11.4). Therefore, to study their isotopic rotation (iso-

spin) we use the following spinors  
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Using the spin tensor (5.12.10) and the spinors (5.12.13), let us define the 4-vector of the iso-

spin of the a-subcont        
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Similarly, the isospin of the b-subcont [i.e. metric (5.11.2)] is determined by the 4-vector  
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The 4-vector of the anti-isospin of a c-subcont [i.e., the metric (5.11.3)] can be defined using 

spinors (5.12.14)    
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We can define the 4-vector of the anti-isospin of the d-subcont [e.g. metrics (5.11.4)] in a simi-

lar way  
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We set the components of the general vector of the isospin of the subcont of the core of the 

«electron» equal to 
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There is another type of isotopic rotation, which is formally defined by complex spinors 
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as well as the complex spinors  
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We substitute into the expressions (5.12.15) through (5.12.34) the complex spinors (5.12.36) 

through (5.12.37) in place of the spinors (5.12.13) through (5.12.14). As a result, we obtain opposite 

values for the components of the 4-vectors of the isospins of the a-subcont and the b-subcont, as well 

as those of the anti-isospin of the c-subcont and the  d-subcont. Let us show this by the example of the 

isospin properties of the a-subcont    
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It is clear from this that, in this case, the components of the 4-vector of the isospin for the               

a-subcont have opposite values to those of their respective components in (5.12.16) through (5.12.19)        
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Therefore, the components of the general vector of the isospin of such an «electron» core 

should also be assumed to be opposite  
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(5.12.43)     

The results (5.12.35) and (5.12. 43) appear analogous to the spin quantum number of classical 

quantum mechanics s = ±½. 
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Let's sum up what we have learned so far:  

1.  In this section we give only initial information on the isospin properties of diagonal quad-

ratic forms. In view of what was said in §§ 1.14 through 1.15, the research data can be con-

tinued until many non-trivial results are obtained.  

2. From the assumption that within the core of the «electron» at rest two intra-vacuum layers 

[for example, (5.11.1) and (5.11.3)] have isospins with the same direction, whereas the oth-

er two layers [e.g. (5.11.2) and (5.11.4)] have isospins with the opposite direction, the con-

clusion is reached that the given isospins, on the average, completely compensate each oth-

er’s representations. However the general isospin of the core of the «electron» is analogous 

to the electron spin quantum number in classical quantum mechanics. 

 

Fig. 5.12.1 Fractal illustration of the intercrossing isospin processes occurring inside 
the core of a spherical vacuum formation 

 
3. Investigations of the isospin properties of the metrics (5.8.16) through (5.8.19) describing 

the core of the "positron" lead to similar results. For example, the 4-vector of the isospin of 

the a- antisubcont can be specified using the spin tensor obtained from the metric (5.8.16):  
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and the components of the general vector of the isospin of such a "positron’s" core are also equal to 
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(5.12.45)     

4. Investigations of the isospin properties of the cores of the «electron» and of the «positron»  

at the level of the 26-m,n-vacuum region can, for example, by using metrics (5.11.35), lead 

to much more complicated but harmonious results.  

5. If in equations (5.11.1) through (5.12.45) instead of the two radii r6, r7  substitute any other 

two radii from the hierarchy of radii (2.6.20), for example,  r2, r3  or  r1, r5  or  r4, r6, etc., we 

obtain similar metric-dynamic models of core and their isospins respectively naked: «plan-

et», «galaxy», «stars», «biological cells», etc. (see Definition № 9.2.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.12.2. The text of the TORAH contains 5845 verses. At the time of writing these lines in the Jewish calendar 
5779 year from the birth of Adam HaRishon (the First Man). Our planet is left to do 5845 – 5779 = 66  revolu-

tions around its axis until Gadol Erev Shabbat (the evening before the Great Sabbath) 
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5.13 Probabilistic description  

Because of many external and internal influ-

ences the core of the «electron» (like the core of any 

other naked stable vacuum formation) is constantly 

fluctuating and distorted like a spherical jelly (Figures 

5.10.5 and 5.13.1). At the same time, the particelle (in-

ner nucleolus) inside the «electron’s» core (Figure 

5.13.1 or Figure 3.1) constantly wanders chaotically in 

the vicinity of the center of this vacuum formation.  

Chaotic motion of the particelle (internal nucleo-

lus) is investigated in detail in Chapters 3 and 4. In this 

paragraph let's consider one of variants of the descrip-

tion of fluctuations of subcont in the «electron’s» core 

and antisubcont inside the core of the "positron".  

As an example of changeable distortion of the 

intra-vacuum layers, consider the description of fluctua-

tions an a-subcont (5.11.1)  
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Such fluctuations of the other three intra-vacuum layers with metrics (5.11.2) through (5.11.4) 

are described similarly.  

Recall that the metric (5.13.1) can be represented as the sum of seven sub-metrics (5.11.35) 

with signature (5.11.33):  
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  +       – а4-subcont        (5.13.5)   

 

 

 
Fig. 5.13.1. The core of any naked stable vacuum 
formation (including the "electron’s" core) con-
stantly varies and is curved, and the particelle (in-
ner nucleolus) constantly wanders chaotically in 
the vicinity of the center of this vacuum formation 
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Consider only one of the seven summands in this expression, for example, (5.13.5) with signa-

ture (– – + –) (the other terms are described similarly).  

As was shown in § 5.12, the sub-metric (5.13.5) (species 2
3

2
2

2
1

2
0

)2 ( ууууs  ) can be rep-

resented in the form of one of the determinants of n )(
4

iA , which are matrices of the form (5.12.8):  
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where  
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If we assume that each of the )(
4

iA -matrices of (5.13.9) is implemented with some probabil-

ity 2
ic (t) (which may vary with time t), the middle )(

4
A -matrix can be represented in the form  
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In the simplest case, when all 2
ic = 1/n, the expression (5.13.12) takes the form  
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Part of the characteristics of the considered random processes can be obtained on the basis of 

the spin tensor analysis  
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Similar descriptions can be formulated for the chaotic fluctuations 

of all sub-layers (5.13.2) through (5.13.8) and the layers (5.11.2) through 

(5.11.4) of the subcont in the «electron’s» core.  

Use of metrics (5.8.16) through (5.8.19) and (5.11.36) can be de-

scribed by fluctuations of the layers and sub-layers of antisubcont inside the 

core of the «positron».  

The probabilistic description of intra-vacuum fluctuations should be 

the subject of a separate study, which would be  beyond the scope of this work. However, we note that 

all the metrics and linear forms with which the Algebra of Signatures operates in the present study are 

only the result of averaging extremely complex and intricate overlays of intra-vacuum layers, sub-

layers and sub-layers ... and plexuses of the subcont’s  and / or antisubcont’s flows (currents) (Fig. 

5.13.2 and 5.13.3). 
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Fig. 5.13.2. Fractal illustration of the vacuum fluctuations 
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Fig. 5.13.3. Fractal illustration of various aspects of the complex and intricate intertwining of the                                      
intra-vacuum layers and weaves of the subcont’s or antisubcont’s flows (currents)  
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5.14 The rotation core of the «electron» and «positron» 

The core of any naked stable vacuum formation, including the core of the «electron» and «posi-

tron», rotates relative to an outside observer (i.e. an observer located in its outer shell); see Figures 

5.11.5 and 5.14.1.   

However, as noted in § 2.3, for an observer located inside the rotating core of  any vacuum 

formation, this rotation can be practically not manifested. In this case, the condition (2.3.14) should be 

satisfied; in particular  
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is the Cartan-Schouten tensor (2.3.5);  
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is the Vaytsenbek -Vitali - Shipov tensor (2.3.8).  

The rotation core of the naked stable vacuum formation (in particular, the «electron’s» core) is 

an extremely complex phenomenon that requires a separate extensive research. In this work we note 

only possible directions of this research on the example of a qualitative review of core rotation of the 

«electron» (or «positron»).  

      
 

 
Fig. 5.14.1.  Rotation of the «electron’s» core has two components: 

1) rotation around the instantaneous axis, and 2) the chaotic change of the direction of its axis of rotation 
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First of all, note that, as mentioned in § 5.11, each 

point of the periphery of the «electron’s» core has to move 

with a linear velocity close to the speed of light               

vr
(–) ≈ c [see (5.11.22) through (5.11.25)]. This is the condi-

tion for the existence of a subcont on the border between 

the core and the outer shell of «electron» (Figures 5.8.1 and 

5.14.1). Such rotational movement of the periphery of the 

core can be described as follows.  

If the surface of the «electron’s» core rotates like a 

solid sphere, the velocity of points lying on its equator          

vе(–),would be maximal, i.e. close to the speed of light     

(vе(–) ≈ с), and the velocity of other points on this area 

would be significantly less (v(–)  с) (Figure 5.14.2).  

The speed of non-equatorial points on the surface of the core would also be close to the speed 

of light, as they must still participate in the surface rotational movements (cyclone and/or anticyclone, 

see Figure 5.14.3), with additional speed vс(–), so that v (–) + vс(–) ≈ c.  

 

          

 

Fig. 5.14.3. Cyclones             and anticyclones       at the surface of the rotating core of the vacuum formation                            
(in particular the «electron’s» core), like circulation of air on the surface of a planet 

 
 

 
 

Fig. 5.14.2. The linear velocity of points        
on a rotating sphere 
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Fig. 5.14.4. Fractal illustration of different zones on the surface of the rotating core of the naked stable                                 
vacuum formation (in particular, the core of the «electron») 

 

On the surface of the considered sphere (Figure 5.14.2, 5.14.4) still remain two points at the 

"North" and "South" poles which do not participate in the rotational motion. But they are due to the 

boundary conditions; these points also need to move with a speed close to the speed of light. There-

fore, the axis of rotation of the «electron’s» core passing through the pole should move with the speed 

of light in the direction perpendicular to the equator (Figure 5.14.1 and 5.14.3).  
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The sun in the infrared spectrum 

 

   
Photograph of the Sun with unit Trace  

The result of superposition of several of the above reasons, the points that are in the peripheral 

layer of the «electron’s» core should participate in an extremely complex perfunctory movement. Thus 

the instantaneous axis of rotation of the whole core as a whole should move along almost a chaotic tra-

jectory (Figures 5.14.5 and 5.14.6).  

          

                  t1                                               t2                                               t3 

Fig. 5.14.5. The chaotic change of direction of the axis of the rotation core of the vacuum formation                                     
(in particular the «electron’s» core) over time relative to an outside observer 

 
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.14.6. On the surface of the Sun is seen many whirling currents (spicules), moving at a speed close to 50 000 km/h.    
It is possible that movements on the surface of the core of any naked stable vacuum formation (including at the periphery 

of the «electron’s» core) are similar to vortex intra-vacuum currents, but with others speeds 
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Initially it is unknown which way to rotate the core of the «electron», but we know that these 

opportunities are only two: "clockwise" and "counterclockwise", and the probability of any of these 

directions of rotations is equal to ½.  

Because of the chaotic precession of the axis of rotation of the core of  the «electron», for any 

given direction in a forward direction, it coincides with this direction part of the time, and the other 

equal part of the time this axis is opposite to it. Therefore, the core of a free resting «electron» has its 

own moment of rotation for any direction, on average, equal to zero. 

Different longitudinal and transverse layers of the «electron’s» core are moving with a different 

velocities (5.11.22) through (5.11.25) depending on the distance from the center r. At the periphery of 

the core, all four of the cross-layers of the subcont, move  on average almost exclusively at the surface 

of a sphere with a radius r6; the layers out of the four intertwined layers of subcont which are closer to 

the particelle (inner nucleolus) become more and more radial (Figures 5.11.5 and 5.14.1). However, 

near the inner nucleolus their velocities are again primarily directed along a sphere with a radius r7 

(Figures 5.14.7 and 5.14.8).  

 

 
Fig. 5.14.7. Near the particelle (inner nucleolus) with a radius r7, subcont speed again increases,                                        

and increases its tangential component 
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Fig. 5.14.8. On the periphery of the «electron’s» core with a radius r6 and near its particelle (inner nucleolus) with                        
a radius r7  the speed of the subcont on average has a tangential component, and between the periphery of the «electron’s» 

core and rakya of its internal nucleolus is dominated by the radial component of velocity of the subcont. 
 

 

Therefore, the projection of the velocities of transverse layers of subcont on the surface of 

spheres with different radii r6 > r > r7 are different. Because of this, longitudinal layers of the «elec-

tron’s» core (Figure 5.14.9) are different.  
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Fig. 5.14.9. Fractal illustration of a state longitudinal layers inside the core of the «electron» 

 
Let's consider some aspects regarding the complex rota-

tion process of subcont and antisubcont in the core of the vacu-

um formations, in particular in the «electron’s» core and the 

«position’s» core.  

Let the point M be located at a distance r from the cen-

ter of the core of the «electron» (r6 > r > r7) as it moves around 

the instantaneous axis of rotation with a linear velocity (Figure 

5.14.10) [48] 

                                       v = ω×r,                            (5.14.4)      

      where  

                             ω = e dφ/dt                           (5.14.5) 

is the angular velocity of rotation of the core (e is a unit vector directed along the instantaneous axis of 

rotation).   

Let the supporting system of reference х1, х2, х3 (Figure 5.14.10), remains stationary, and the 

system у1, у2, у3 chaotically  precesses together with the instantaneous axis of rotation of the core. 

The coordinate axes of the reference and shifting reference systems in this case are intercon-

nected by a system of three linear equations 

                                    уα = βα1(t) х1 + βα2(t) х2 + βα3(t) х3 ,                                            (5.14.6)    

where βαk(t) (α,k =1,2,3) are the direction cosines, which are random functions of time.  

 
Fig. 5.14.10. The definition of            

angular speed [48] 
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Referring to equations (5.14.6) [48], we differentiate 
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 ,                   (5.14.7)     

where ωα (t) is the instantaneous projection of the angular velocity vector ω(t) on the reference axis of 

the reference system х1, х2, х3  at time t. 

Equating coefficients of the unit vectors хk, from equation (5.14.7), we obtain the system of 

equations for speeds of change of the direction cosines  

                                                   dβα1/dt = βα1 = ω2βα3 – ω3βα2,                                          (5.14.8)     

                                                   dβα2/dt = βαβ = ω3βα1 – ω1βα3,                                          (5.14.9)     

                                                       dβα3/dt = βα3  = ω1βαβ – ω2βα1,                                                                (5.14.10)     

which can be written in matrix form [48]  

                                                     




























































3

2

1

12

13

23

3

2

1

0

0

0

























.                                         (5.14.11)     

Combining the three matrix equations into one will get a matrix of kinematic Poisson equation [48]  
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which determines the displacement of a point M on a sphere with radius r.  

According to (5.11.22) through (5.11.25), the velocity of intra-vacuum layers in the core of the 

«electron» relative to the observer inside the core equals 

                                 vr
(–a)(r) = c(– r7/r + r2/r6

2)1/2    – velocity of the а-subcont;                      (5.14.13)     
                                 vr

(–b(r) = c(r7/r – r2/r6
2)1/2       – velocity of the b-subcont;                       (5.14.14)     

                                 vr
(–c)(r) = c(– r7/r – r2/r6

2)1/2    – velocity of the c-subcont;                      (5.14.15)     
                                 vr

(–d)(r) = c(r7/r + r2/r6
2)1/2      – velocity of the d-subcont.                       (5.14.16)     

However, relative to the observer outside the rotating core of the «electron», these speeds are 

decomposed into radial vrr
 (–m)(r) and tangential components of vrt 

(–m)(r)                   

                              vr
(–a)(r) = vrr

 (–a )(r) + vrt 
(–a)(r);                                         (5.14.17)     

                                                          vr
(–b)(r) = vrr

 (–b)(r) + vrt 
(–b)(r);                                          (5.14.18)                 

                              vr
(–c)(r) = vrr

 (–c)(r) + vrt 
(–c)(r);                                          (5.14.19)                  

                                              vr
(–c)(r) = vrr

 (–c)(r) + vrt 
(–c)(r).                                           (5.14.20) 

whereby the tangential velocity component of each intra-vacuum layer can be estimated by the expres-

sion 

                                                     vrτ
 (–m)(r) ≈ ω(t)×s(–m) ,                                              (5.14.21)                   

where s(–m)  is the dimensional vector of isospin of the m-th intra-vacuum layer.  
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For example, the vector of the tangential speed of subcont inside the «electron’s» core approx-

imately equals  

                                                      vrτ
 (–a)(r) ≈ ω(t)×s(–a) ,                                               (5.14.22) 

                                                     

where s(–m) is the dimensional vector and isospin of the a-subcont with components (5.12.17) through 

(5.12.19):             

From the expression (5.14.19), taking into account the component (5.14.23), we estimate the 

module of the instantaneous value of the tangential speed of subcont between the two abysses (rakyas) 

of the «electron’s» core (r6 > r > r7) 

                                      |vrt 
(–а)(r)| ≈  ½ r sinθ [ω1(t)2 + ω2(t)2]½.                                  (5.14.23) 

 

provided that on the periphery of the core with a radius r6  

 

                                  |vrt 
(–а)(r6)| ≈  ½ r6 sin θ [ω1(t)2 + ω2(t)2]½ = с,                             (5.14.24) 

 

and in the area of abyss (rakya) particelle (inner nucleolus) with a radius r7 , the following condition is 

fulfilled 

                                  |vrt 
(–а)(r7)| ≈  ½ r7 sin θ [ω1(t)2 + ω2(t)2]½ = с.                             (5.14.25) 

 

From the expression (5.14.17) it follows that the radial component of a-subcont velocity inside 

the «electron’s» core approximately equals     

 

       vrr
 (–a )(r) ≈ vr

(–a)(r) – vrt 
(–a)(r) ≈ c(– r7/r + r2/r6

2)1/2 – ½r sin θ [ω1(t)2+ ω2(t)2]½.   (5.14.26) 

 

On the basis of analysis of the expressions (5.14.18) through (5.14.20), the tangential and radial 

components of: b-subcont velocity, c-subcont velocity and d-subcont velocity in the «electron’s» core) 

can be obtained.  

This is similar to the described rotational processes inside the core of the "proton" when you 

use metric (5.8.16) through (5.8.20) with the opposite signature (– – – +).  

In all the equations of this paragraph, if, instead of the radii r6, r7, one substitutes any other pair 

of radii of the hierarchy (2.6.20) (for example, r4, r2  or  r6, r9  or  r5, r7, etc.), then one gets the descrip-

tion of rotational processes within any other naked vacuum formation, for example, the core of the na-

ked “galaxy", the core of the naked «planet», the nuclei of naked biological «cells», etc.   
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Fig. 5.14.11. Fractal illustration of a complex multi-layered rotational processes, 

occurring in the core of the naked stable vacuum formations (in particular in the «electron’s» core) 
 

 

At this point we note again that no complete solutions to the assigned tasks exist. In this paper 

are indicated only ways of describing the rotation of the various layers of cores of the naked stable 

vacuum formations (in particular the cores of the «electron» and «positron»).    
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5.15 Rakya (abyss) around the cores of «electrons» and «positrons» 

Let’s return to the consideration of metrics (2.6.9) through (2.6.12) with signature (+ – – –). 

Let's write down the given metrics taking into account (2.6.5) through (2.6.8)  
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                                                                                                                                                   (5.15.4)  

  ,sin 22222222)(
5  ddrdrdtcds                                                                                    (5.15.5)         

where according to hierarchy (2.6.20):  

       r1 ~ 3.4·1039 cm   –  characteristic radius of the closed «Universe»;                                 (5.15.5а)             

r2 ~ 1.2·1029 cm   – characteristic radius of the «metagalaxy» core; 

r3 ~ 4·1018 cm      –  characteristic radius of the «galaxy» core;  

r4 ~ 1.4·108 cm    – characteristic radius of the «star’s» (or «planet’s») core; 

r5 ~ 4.9·10–3 cm   –  characteristic radius of the biological «cell»; 

r6 ~1.7·10–13 cm   –  characteristic radius of the «elementary particle’s» core; 

r7 ~ 5.8·10–24 cm  –  characteristic radius of the «protoquark’s» core; 

r8 ~ 2.1·10–34 cm    –  characteristic radius of the «plankton’s » core; 
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r9 ~ 7·10–45 cm       –  characteristic radius of the «phytoplankton’s » core; 

r10  ~ 2.4·10–55 cm  – characteristic radius of the «instanton’s » core.            

We rewrite the metric (5.15.1) through (5.15.5)      
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   (5.15.9)  

  .sin 22222222)(
5  ddrdrdtcds                                                                                     (5.15.10)         
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In relation to the implementation of equality  
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metrics (5.15.6) through (5.15.10) can take the form of        
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  .sin 22222222)(
5  ddrdrdtcds                                                                              (5.15.23)   

   
In the vicinity of the «electron’s» core with a radius of about r6 ~1,7·10–13 см {see hierarchy 

(5.15.5 a)} all third terms in the metric (5.15.19) through (5.15.22) (for example, 1 – rB/r + r2/rY
2) can 

be considered as a permanent (constant) background. Since in the range of lengths from r5 ~ 4,9·10–3 

cm to r7 ~ 5,8·10–24 cm they practically do not change 
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  because in the area of the «electron’s» core:  rB/r6 ~ 1053 ~    and   r6
2/rY

2 ~ 1084 ~ .      

In addition, if you average all the third terms (15.23 a) in the metrics of the species (5.15.19) 

through (5.15.20) with signatures (+ – – –)  and  (– + + +), they fully compensate for each other ac-

cording to the vacuum condition. 

Taking into account the expressions (5.15.23 a), the stable "convex" formation (which we call 

«electron»), existing on a constant background, can be more accurately described by the following 

multilayer metric-dynamic model: 
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                                                            «Electron»                                                    (5.15.24)    
"Convex" multilayer vacuum formation with signature 

(+ – – –) 
consisting of: 

 
Тhe outer shell of the «electron»  
in the interval [r1, r6] (Figure 8.1 or 15.1) 
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   – а-subcont,           (5.15.25)         
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  – b-subcont,            (5.15.26)           
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   – c-subcont,           (5.15.27)          
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   – d-subcont;        (5.15.28)  

    
The core of the «electron» 

in the interval [r6, r10] (Figure 5.8.1 or 5.15.1) 
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  – c-subcont,          (5.15.31)        
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   – d-subcont;        (5.15.32)   

 
The scope of the «electron» 

in the interval [0, ] 
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Fig. 5.15.1. Visualized metric-dynamic model of stable 
multilayer vacuum formation (in particular, «electron» or                
«positron»), consisting of: outer shell, abyss (rakya), core 

and internal particelle, and its fractal illustration 
 

Performing a similar action with the met-

ric (2.6.14) through (2.6.18), we get the follow-

ing refinement of the metric-dynamic model of a 

«positron» (i.e. the model is an exact negative 

copy of an «electron»): 

                                                
                                              «Positron»                                                       (5.15.36)       

"Concave" multilayer vacuum formation with signature 
(– + + +) 

consisting of: 
 

The outer shell of the «positron» 
in the interval [r1, r6] (Figure 5.8.1 or 5.15.1) 
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   – а-antisubcont,      (5.15.37)         
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  – b-antisubcont,       (5.15.38)           
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   – c-antisubcont,      (5.15.39)          
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   – d-antisubcont;   (5.15.40) 
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The core of the «positron» 
in the interval [r6, r10] (Figure 5.8.1 or 5.15.1) 
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    – b-antisubcont,       (5.15.42)       

        2222

2
6

2

2
22

2
6

2
2)(

3 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds

L

L 



















   – c-antisubcont,        (5.15.43)        
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   – d-antisubcont;        (5.15.44)         

 

The scope of the «positron» 

in the interval [0, ] 
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For the effect of additional terms on the metric-dynamic state of the outer shell and the core of 

the «electron» (or «positron»), consider the example of an a-subcont. We write the metrics (5.15.25) 

and (5.15.29) subject to the equations (5.15.45a) and (5.15.45b):         

–  for an a-subcont in the outer shell of «electron» 
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– for an a-subcont in the «electron’s» core   
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According to the hierarchy (5.15.5 a), the radii of vacuum formations differ of many times from 

each other r1 >> r2 >> r3 >> r4 >> r5 >>  r6   >> r7 >> r8 >> r9 >> r10. Therefore, apart from the terms 

containing the radius of the core of the «electron» r6, the greatest impact in the metric (5.15.46) are the 

components of  r2/r5
2, as in the metric (5.15.47), which dominate the components of r7/r in the metric. 

If we exclude all other additional terms, we will return to the metric-dynamic model of  the «electron» 

(2.6.23) through (2.6.31). 

However, at the boundary between the «electron’s» core and its outer shell (Figure 5.10.5), 

which in this paper is called rakya (or abyss: Figure 5.15.1), additional terms have a tangible impact. 

To explain this circumstance, let us first consider the roughest (first) approximation, on the example of 

simplification of metrics (5.15.46) and (5.15.47):               

- for an a-subcont in the outer shell of «electron» 
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 - for an a-subcont in the «electron’s» core 
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In fact, the Schwarzschild radius is the radius of the spherical boundary (rakya) between the 

«electron’s» core and its outer shell (Figure 5.15.2). Тhis corresponds to the distance rs from the center 

of the vacuum formation at which the zero compo-

nent g00 of the metric tensor is equal to zero [34]. For 

example, for metrics (5.15.48) and (5.15.49), the 

Schwarzschild radius is defined by the expressions  
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c    (5.15.50) 

 

from which follows: rss = r6 and rsc = ir6 .  

 

Thus, at the roughest (first) approximation, a clear boundary is revealed between the «elec-

tron’s» core and its outer shell. This explicit boundary (i.e. rakya) is a sphere with radius r6 (Figure 

5.15.2).  

With a more detailed (second) approximation, metrics (5.15.46) through (5.15.47) acquire the 

following form:  

 

Fig. 5.15.2. Fractal illustration of the Schwarzschild 
sphere separating the «electron’s» core               

from its outer shell 
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– for an a-subcont in the outer shell of the «electron» 
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– for an a-subcont in the «electron’s» core 
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(5.15.52)  

In this case, by analogy with (5.15.50), the rakya (that is, the sphere determined by the 

Schwarzschild radius, hereafter denoted the “Schwarzschild horizons”) is expressed:                                            
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which are converted to cubic equations  
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where, according to the hierarchy (5.15.5a):  

r5 ~ 4.9·10–3 cm    –  characteristic radius of the biological «cell»;                            (5.15.56)    

r6 ~1.7·10–13 cm   –  characteristic radius of the «elementary particle’s» core; 

r7 ~ 5.8·10–24 cm   –  characteristic radius of the «protoquark’s» core. 

As is known, the three roots of the cubic equation of the form are determined by Cardano for-

mulas [52] 
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In the particular case of the equation (5.15.54):   

                                         pk = ps = r5
2,         qk = qs = – r5

2r6,                                        (5.15.60)    

and in the case of equation (5.15.55):   

                                              pk =  pс = r6
2,        qk = qс = – r6

2r7.                                      (5.15.61) 

Substituting the value of (5.15.60) into (5.15.58), we have    
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Then on the basis of (5.15.56), (5.15.57) and (5.15.62) we obtain three roots of the equation (5.15.54)   
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Similarly, substituting values (5.15.61) in (5.15.58), we have     

                               .
232

,
232

3

2

7
2

6

32
67

2
63

2

7
2

6

32
67

2
6








 

















 











rrrrrrrrrr          (5.15.66) 

Then on the basis of (5.15.56), (5.15.57) and (5.15.66) we obtain three roots of the equation 

(5.15.55)     
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It is obvious that the radii (5.15.63) through (5.15.65) are associated with the splitting and ex-

pansion of rakya (i.e. the Schwarzschild horizons) around the a-subcont shell of the biological cell. 

While the radii (5.15.67) through (5.15.69) are associated with the splitting and extension of the              

a-subcont rakya (i.e. the Schwarzschild horizons) around the «electron’s» core.        

A similar examination of all metrics (5.15.25) through (5.15.32) allows us to obtain eight cubic 

equations:  

                           I                              06
2

5
2

5
3)(

100  rrrrrg s                                               (5.15.70)    

                I         H                             06
2

5
2

5
3)(

200  rrrrrg s                                              (5.15.71)    

                           V                             06
2

5
2

5
3)(

300  rrrrrg s                                             (5.15.72)    

                           H’                            06
2

5
2

5
3)(

400  rrrrrg s                                            (5.15.74)    

 
                           I                               07

2
6

2
6

3)(
100  rrrrrg c                                             

(5.15.75)         

               H         H                             07
2

6
2

6
3)(

200  rrrrrg c                                             
(5.15.76)         

                           V                             07
2

6
2

6
3)(

300  rrrrrg c                                            
(5.15.77)         

                           H’                            .07
2

6
2

6
3)(

400  rrrrrg c                                           
(5.15.78)       

 

which determine the splitting and extension (second-level representation) of the rakyas  of the all four 

of the a, b, c, d - subconts  around the two cores (in this case, the biological cell and the «electron’s» 

core) which are nested into each other (see Figures 5.15.3, 5.15.4).     
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Taking into account the zero components g00 of the metrics (5.15.25) through (5.15.32) at the 

third level of representation, we have eight cubic equations:  
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where, according to (5.15.34) and (5.15.35):    
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These equations describe the multilayer structure of rakyas (spherical Schwarzschild horizons) 

around the cores of the vacuum formations under consideration.  

One needs to devote a further and more extensive investigation of the rakyas surrounding the 

cores of stable vacuum formations (e.g., «electron’s» core); this may lead to a revision of our relation-

ship to the universe.  

But now, a combination of the equations (5.15.79) through (5.15.86) shows that the rakya is an 

extremely complex multilayered shell of the core (Figure 5.15.5, 5.15.6). The formation of the struc-

ture of each rakya is influenced by all spherical vacuum formations with the radii (5.15.5 a).  

Fig. 5.15.3. Fractal illustration of rakya, i.e. 
the multi-layered boundary between the core 

of the «electron» and its outer shell 

        

Fig. 5.15.4. Fractal illustration of the splitting and expansion       
of rakya (i.e. the Schwarzschild spherical horizons)              

around the core of a stable vacuum formation                   
(including around the «electron’s» core») 
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For example, in the  «electron’s» rakya there is a sub-layer connected to the Universe; another 

sub-layer is connected to the galaxy; the third sub-layer is connected to the planet in which it is locat-

ed, etc. 

Thus, we find that all spherical vacuum formations nested within each other (regardless of 

scale) affect each other. Changing the rakya of one of them inevitably affects the rakya of all other 

members of the hierarchy. This rule is consistent with the "principle of Space Responsibility".  
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Fig. 5.15.5. Fractal illustrations of complex and multi-layered rakya (i.e., the shell or spherical Schwarzschild belt)  

surrounding the cores of stable vacuum formation (in particular, the core of the «electron»).  
Under-layers of rakya associated with the respective radii of hierarchy (5.15.5 a): 

rakyas Universe, Metagalaxy, galaxy, planet, cell,..., proto-quark, instanton 
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Fig. 5.15.6. Fractal illustrations of rakya - multilayer boundary between the core of a stable vacuum formation           

(in particular, the core of an "electron") and its outer shell, in which there are core - satellites similar to the satellites of stars 
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According to the representations of Alsigna the 

skin of the living entity (Figure 5.15.7) has many interre-

lated layers, each of which has its own function, and has a 

connection with the corresponding cosmic and atomic mo-

lecular structures.       

In this paper, we will not go into the study of 

rakyas of stable vacuum formations. But for the beginning 

of the study of the effect of macro - and microscopic struc-

tures on the «electron’s» rakya, we recommend putting 

forward a metric, for example, the metric (5.15.25): 
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as a set of five separate metrics:  
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Fig. 5.15.7. Multilayer leather cover           

of the animal's body 
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Also metric (5.15.29)  
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(5.15.91)      

in the same approximation can be represented as four separate metrics:  
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.                                  

After examining these metrics individually, can define rules for combining the results, such as 

averaging and the superposition. 

Similar actions can be taken with all other metrics (5.15.24) through (5.15.36).     

If the cores and the outer shells of all stable spherical vacuum formations are on average similar 

to each other, then their rakya are unique, since the environment of the cores depends not only in what 

nuclei they are inside, and what cores are inside them, but also on their position in the Universe. 

Further studies of rakya of vacuum formations in the axiomatic framework of the Algebra of 

Signatures can lead to the development of a powerful mathematical apparatus, which, in conjunction 

with a fractal visualization, would allow us to expand our understanding of the fine structure of vacu-

um formations. 

Once again, let's emphasize the amazing ability of fractals to visualize various aspects of the 

manifestation of vacuum structures. One can try to describe in detail the contours of visual sensations, 

that are induced by the mathematical apparatus of the Algebra of Signatures (Alsigna), but sometimes 

it is enough to admire the view of a single fractal (e.g., Figure 5.15.8), to render extensive verbal de-
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scriptions unnecessary. Mathematics, consistent with fractal plots, acquires shades of solidity, and the 

logical constructions of the Alsigna find support in fractals in the form of tangible contact with reality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 
Fig. 5.15.8. Fractals are an amazing way to visualize the geometric essence of vacuum formations and of vacuum pro-

cesses. Often the fractal contains such a huge volume of figurative information, the description of which would require                
dozens of pages of text, but such a detailed text would not have the exhaustive harmony of the fractal image 

 
 

5.16 Summary of Chapter 5 

In this chapter: 

- the basics of the general dynamics of intra-vacuum layers and a particular case of geometrized 

vacuum electrodynamics are presented;  
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- the metric-dynamic model of the core of stable vacuum formations  the example of the cores of 

the «electron» and the «positron» is studied»; 

- variants of the development of a dynamic model of rotation of different longitudinal and trans-

verse layers of vacuum extent inside the core of a stable vacuum formation (in particular, the core of 

the «electron» and the core of the « positron»). 

- the foundations for the study of the rakya (the sphere determined by the Schwarzschild radius, 

here labeled the “Schwarzschild horizons”) separating the core of stable vacuum formation from its 

outer shell (in particular, the rakya of the «electron» and the rakya of the «positron») are laid. 

 

 


