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2 Extensions of the Einstein's vacuum equations and their solutions 

 

One of the aims of metraphysics is to eliminate the concept of 

mass as a fundamental property. We present here a promising approach 

to achieving this end. In order to do this, we consider the interface be-

tween different solutions of the Einstein field equations, and construct an 

extension of these equations and their solutions. This forms the basis of a 

metric-dynamic model of particles of varying sizes, including virtually all 

elementary particles that are part of the Standard Model.  

This Chapter considers three types of Einstein's vacuum equations and the totality of their solu-

tions. It is shown that it makes sense to consider the sums and/or of averaging various solutions of the 

same Einstein vacuum equation, despite the fact that these equations are nonlinear. The Chapter is 

aimed at the development of differential geometry and the program of Clifford-Einstein-Wheeler for 

the complete geometrization of physics. 

A note on terminology: New concepts are introduced using either terms coined by the author, 

or new usages of words already in use for similar concepts. At appropriate places in the text, we call 

the attention of the reader to the new terminology with explanations preceded by the word “terminolo-

gy” in bold. These terms are tentative, and the author welcomes suggestions for improvements on the 

terminology. 

2.1 The first Einstein's vacuum equations and its solutions 

1(a) The Einstein - Hilbert equation for vacuum has the form 
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where gij are metric tensor components;  
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  is the Ricci tensor;                                           (2.1.2) 

       R = gikRik  represents scalar curvature;                                                                          (2.1.3) 
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  are Christoffel symbols.                                                (2.1.4)                 

Combining (2.1.1) with gik, we obtain [38] 
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                                  (2.1.5)  

because ngg ik
ik   of the number of spatial dimensions.  
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For any n-dimensional space (except for n = 2), Equation (2.1.5) can only be performed when        

R = 0. Therefore, for n = 4, Equation (2.1.1) becomes 

                                                            0ikR .                                          (2.1.6) 

Expression (2.1.6) will be called the first Einstein’s vacuum equation. 

The solutions to (2.1.6) are best expressed, as a rule, in a spherical coordinate system in the 

form of metrics. Before we present these metrics, we need to insert a note about our terminology.   

1(b) Terminology (the following italicized notes are due to the translator): The term "signa-

ture” used here is an extension of the usual means to determine where a metric component is positive 

definite or negative definite. More broadly, suppose a space S of points s=(x0,x1,x2,x3) has several met-

rics or pseudometrics defined on it, such that each metric or pseudometric [ds]i is described by  

                [ds]i
2= a0 f1(s,p)dx0

2 + a1 f2(s,p)dx1
2 + a2 f3 (s,p) dx2

2 + a3 f3 (s,p)dx3
2,  

where for i {0,1,2,3},  fi(s) are positive definite functions defined on S, p are given parameters, and    

ai {0,1,1}. (For convenience, we shall drop “or pseudometric” and the mention of the parameters 

in the rest of this section.) Then, if this is a quadratic (metric) form, we form the ordered tuple (a0, a1, 

a2, a3), whereby  is abbreviated “” and 1 is abbreviated “+” (0 retains its name). We then term it 

a “signature” of the metric.  If, on the other hand, the defining equation of each of the metrics is a lin-

ear (affine) form or "colored" quaternion (“colored” to be explained later), we term it a “stignature” 

to emphasize this difference. However, in what follows, the rules for signatures extend in a natural 

way to stignatures. 

Suppose further that several metrics are defined on the region in question such that they only 

differ in the sign of their coefficients. This would allow a set of 64 possible metrics in such a set.  

Now we use the fact that the sum of two metrics yields another metric. To complement this situ-

ation, we can define an operation, a component-wise addition: if there are two signatures in the set        

(a0, a1, a2, a3) and (b0, b1, b2, b3), then (a0, a1, a2, a3) ൅෥  (b0, b1, b2, b3) = (a0+b0, a1+b1,  a2+b2, a3+b3) if 

and only if (a0+b0, a1+b1, a2+b2, a3+b3); that is, the sum of the signatures of metrics is the signature of 

the sum of the corresponding metrics. Such a set of 64 signatures will form a group under ൅෥  .We 

henceforth drop the tilde, using + for both normal addition and this operation, where the difference 

will be clear from the context.  

We can also form various substructures. For example, the aforementioned difference between a 

signature and a stignature is one distinction. Restrictions of the fact that the metrics are defined on 

spacetime introduces further restrictions. Furthering such considerations, the functions we will be us-

ing will fulfill the condition that a0×a1×a2×a3 = 0 if and only if a0=a1=a2=a3= 0. (The reason for this 

will become apparent later in the paper. Since the resulting substructure of only 17 elements no longer 

forms a group under the same operation as before, lacking closure, further restrictions on the opera-
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tion needs to be made to enjoy the consequences of the group structure.) Other restrictions will limit 

the number of elements even further, or require further structure. Taking all of these possibilities to-

gether into a single structure is beyond the scope of this paper, but this algebra, which we term the 

“Algebra of Signatures”.  

In this paper, most of the metrics will be expressed so that the spatial portion is expressed in 

spherical coordinates (r, , ), so that x0  t, x1  r, x2 , x3  , and the metric is expressed as: 

                                     ds2 = a1 f1(t)dt2 + a2 f2(r)dr2 + a3 f3 (r) d 2 + a4f4 (r,)d 2. 

For this reason, we shall refer to the regions of vacuum on which the metrics are defined as 

“spherical formations”. The fact that measurements of most particles are spherically symmetrical is a 

further support for the intuitive feel of this term.    

Solutions of equation (2.1.6) are considered in many works on modern differential geometry 

and general relativity. However, in none of the publications known to the author, the relationship be-

tween the various solutions of this equation is discussed, so we will consider it in sufficient detail. 

Solutions of equation (1.6) are usually sought in a spherical coordinate system in the form of 

metrics: 

                  ds(–)2 = ес2dt2 – еdr2 – r2d 2  r2sin2 d 2  with the signature (+ ),             (2.1.7)                    

                  ds(+)2 = –ес2dt2 + еdr2 + r2d 2 + r2 sin2 d 2  with the signature (– + + +),       (2.1.8)    

where   and  are the sought-after functions of t and r respectively.  

As a result of the substitution of covariant and contravariant components of the metric tensor of 

the metric (2.1.7) in equation (2.1.6) for fixed (i.e., time-independent) vacuum states, we obtain a sys-

tem of three equations [34]:   

                                                                             = – ;                                                           (2.1.9)     

                                                            –е  ( /r + 1/r2) + 1/r2 = 0;                                            (2.1.10)           

                                                                  +  2 + 2 /r = 0.                                                 (2.1.11)             

The differential equation (2.1.10) has three solutions:  

                                         1 = ln(h1+ h2 /r),      2 = ln(h1 – h2 /r),        3 = h3,                         (2.1.12)     

where h1, h2, h3 are integration constants.  

Equation (2.1.11) also has three solutions:  

                                          1 = ln(1+ b/r),         2 = ln(1 – b/r),            3 = 0,                         (2.1.13)    

where b is a constant of integration.  

If  h1 = 1,  h2 = b, and  h3 = 0, the solutions to (2.1.12) and to (2.1.13) coincide.  

Substituting the three possible solutions (2.1.13) in the metric (2.1.7) with (2.1.9) we obtain the 

three metrics with the same signature (+   ):  
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                      dsa
(–)2 = (1– r0 /r)с2dt2 – (1– r0 /r) –1dr2 – r2d 2 – r2sin2 d 2,                            (2.1.14)      

                      dsb
(–)2 = (1+ r0 /r)с2dt2 – (1+ r0 /r) –1dr2 – r2d 2 – r2sin2 d 2,                           (2.1.15)    

                      dsc
(–)2 = с2dt2 – dr2 – r2d  2 – r2sin2 d 2.                                                           (2.1.16)       

         

where r0 = b is the radius of  the corresponding closed sphere.  

By doing the same operations with the components of the metric tensor of the metric (2.1.8), 

we obtain the following three metrics, also satisfying Equation (2.1.6), but with opposite signature              

( + + +):  

                        dsa
(+)2 = – (1– r0 /r)с2dt2 + (1– r0 /r) –1dr2 + r2d 2 + r2sin2 d 2,                      (2.1.17)        

                        dsb
(+)2 = – (1+ r0/r)с2dt2 + (1+ r0 /r) –1dr2 + r2d 2 + r2sin2 d 2,                      (2.1.18)     

                        dsc
(+)2 = – с2dt2 + dr2 + r2d  2 + r2sin2 d 2.                                                   (2.1.19)   

 

Each of the metrics (2.1.14) through (2.1.19) is irreducible to the others; together this is called a 

generalized Schwarzschild metric.  

Metrics (2.1.14) through (2.1.19) describe the state of the same region of the vacuum. There-

fore we consider different variants of their averages, in spite of the fact that equation (2.1.6) is non-

linear; in general, in such cases the sum of the solutions is not itself a solution.  

If the centers of the metrics (2.1.14) through (2.1.16) and (2.1.17) through (2.1.19) coincide, 

evidently they will sum to zero  

       dsa
(–)2+dsb

(–)2+dsc
(–)2+dsa

(+)2+dsb
(+)2+dsc

(+)2 = 0·с2dt2 +0·dr2 + 0· d 2+ 0·sin2 d 2= 0.     (2.1.20)  

The resulting metric is  

                                                                      ds(0)2 = gij
(0)dxi

 dxj
 ,                                                 (2.1.21)  

 where                                                     ,
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which is also a trivial solution of the vacuum equation (2.1.6). 

Thus, contrary to expectation, the addition of the six metrics (2.1.14) through (2.1.19) leads to 

the production of additional solutions of (2.1.6).  

Let us now consider the arithmetic average of the two metrics (2.1.14) and (2.1.15)  
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           (2.1.23)  

The distance between two points r1 and r2 in a region with signature (+ ) is determined by 

the following expression in General Relativity: 
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By substituting g11
() into the average of the metric (2.1.23), we obtain  
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First we find the value of the interval between the points            

r1 = 0  and  r2 = r0:  

                       00
2

00
2

0
2 10 irrrrr r  .      (2.1.26)    

The length of this segment is equal to the radius of the cavi-

ty r0, and the imagination of this result suggests that equation 

(2.1.6) does not describe the closed region of the vacuum (spherical 

cavity) with radius r0.  

Outside this cavity, i.e. from r1 = r0 to r2 = , we have   

                
2

0
22

0
2

12
0

rrrrr
r

 
.             (2.1.27)  

In the absence of deformation, the distance between points 

r2 =  and r1 =  r0 is equal to   – r0, and  in this case  this is  equal 

to (2.1.27). The difference between these segments is approximate-

ly equal to         

                        00
2

0
2 rrr  .                (2.1.28) 

This result shows that the average length of the vacuum on 

the interval ]r0, [ is compressed by an amount  r0  in all radial 

directions due to the fact that it was forced out of the cavity radius 

(2.1.28). This result is similar to the air bubble in the liquid (Figure 

2.1.1).  

The difference between the original uncurved local area vacuum state and its current (curved) 

status is determined by the difference [41]  

                                                     ds(–)2 – ds0(–)2 = (gij
(–) – gij

0(–)) dxi
 dxj ,                                                       (2.1.29) 

where  ds0(–)2  metric of the uncurved area of the vacuum; 

            gii
0(–) components of the metric tensor in the uncurved area of the vacuum.                    

            The relative lengthening of the one of side of the vacuum region is expressed by 

Fig. 2.1.1 Air bubble in liquid 

Fig. 2.1.2 Graph of the function 

lr
(–): relative length of the vacuum 

in the outer shell surrounding the 

spherical cavity. Executed in 

MathCad 14 for r0 = 2 
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whence it follows [41]                              ds(–)2 = (1 + l(–))2 ds0(–)2,                                                                    (2.1.31)       

                                         and  
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The uncurved state of the section under consideration in a vacuum state is given by the metric 

(2.1.16). Therefore, substituting components gii
0(–) and gii

(–), respectively, from (2.1.16) and (2.1.23) to 

(2.1.32), we obtain     

 The uncurved state of the considered vacuum section is defined by the metric (2.1.16), there-

fore, substituting components gii
0(–) and gii

(–), respectively, from (2.1.16) and (2.1.23) to (2.1.32), we 

obtain the relative elongation of the vacuum in each radial direction in the region of r0 to             
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         The graph of the functions lr
(–) is shown in Figure 2.1.2. At          

r = r0, the function tends to infinity, and when r < r0 it becomes 

the complex function. This once again confirms that, within the 

sphere of [0, r0], there is a cavity, as in Figures 2.1.1 and 2.1.2.  

Here we will not discuss the question: - What is inside a 

cavity with radius r0 if there is no vacuum? Further, when con-

sidering the second Einstein vacuum equation, this problem will 

be solved by itself. 

Thus, averaging the metrics (2.1.14) and (2.1.15) leads to 

the metric-dynamic description of the stable formation of a vacu-

um-type "air bubble in a liquid", while the metrics (2.1.14) or 

(2.1.15) alone do not lead to such results.  

We note the following important fact. The average quad-

ratic form (2.1.23)            

                   dsab
(–)2 = 

2
1 (dsa

 (–)2+ dsb
 (–)2)           (2.1.34)         

naturally evokes the Pythagorean theorem a2 + b2 = c2. This means 

that the line segments ( 2
1 )1/2dsa

(–)
  and  ( 2

1 )1/2 dsb
(–) are always mu-

tually perpendicular with respect to each other dsa
(–)
 dsb

(–) (Figure 

2.1.3). To illustrate, a double helix can be projected onto a plane 

Fig. 2.1.4. A double helix 

can be projected onto a 

plane such that the tangents 

of the resulting curves are 

perpendicular to one anoth-

Fig. 2.1.3 Values of segments 

dsa
(–)

 and  dsb
 (–) 
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such that the tangents of the resulting curves are perpendicular to one another at the points of intersec-

tion (as shown in the typical simplified diagram of a DNA double helix in Figure 2.1.4). That is, pro-

jecting the two curves {(x,y,z): x = rcos t, y = rsin t, z = kt} and {(x,y,z): x = rcos t, y = rsin t, z = k(t 

+ )} onto the x-z plane, the tangents where the resulting plane curves meet at z = 0 are perpendicular 

to one another). By symmetry, this applies to all planes containing the z axis.  

Thus, the averaged metric (2.1.23) corresponds to the segment of the "braid" consisting of four 

twisted “threads” (i.e. linear forms) dsi
(-), which form a system of two complex conjugate numbers 

whose product is equal to (2.1.34). 

                                                             dsab
 (–)= 2

1 (dsa
 (–)+idsb

 (–)),                                                          (2.1.35)   

whose product is equal to (2.1.34).  

In connection with the foregoing, we will call averaged metrics “k-braid” (where k is the num-

ber of averaged metrics). In particular, the averaged metric (2.1.23) is called a “2- braid”. 

In connection with the above, we will call the averaged metric a "k-braid" (where k represents 

the number of threads). In particular, the averaged metric (2.1.23) is called "2-braid" as it is "coiled" 

from 2 lines dsa
(–)

 and  dsb
(–) (see Definition № 1.22.1). 

Analogously, averaging metrics (2.1.17) and (2.1.18) leads to a "2-antibraid”.   
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(2.1.36) 

which describes the metric-dynamic state of the stable formation of a vacuum-type "air bubble in a liq-

uid", but is a complete antithesis of the vacuum formation, describing a 2-braid (2.1.23). In such a case 

it behooves us to emphasize that the distance between two points r1 and r2 in the region with signature 

( + + +) is determined by the expression  

                                                        drgrr
r

r
 
2

1

)(
1112

.      

The 2-braid (2.1.23) and 2-antibraid (1.36) fully complement one another, thereby yielding a 

solution of (2.1.21). 

In total, the 2-braid (2.1.23) and 2-antibraid (2.1.36) completely compensate for each other's 

manifestations and give a solution (2.1.21): dsab
(–)2 + dsab

(+)2 = ds(0)2. If it is conditionally assumed that 

the 2-braid (2.1.23) describes the metric-dynamic state of a stable “convexity” in the vacuum extent 

(Figures 2.1.1 and 2.1.2), then the 2-antibraid (2.1.36) describes exactly the same “concavity” in the 

same extent. 



 90

 

 

Substituting the components gii
0() of metric (2.1.16) and component g11

() of the metrics 

(2.1.14) or (2.1.15) into equation (2.1.32) leads to the absurd results shown in Figure 2.1.5.  

 

The absurdity of the calculation results shown in Figure 2.1.5, once again confirms that the av-

eraging of metrics (2.1.14)  (2.1.15) and/or metrics (2.1.17)  (2.1.18) is not meaningless, because 

this averaging leads to comprehensible results (see Figures 2.1.1 and 2.1.2).  

Now we discuss the metric-dynamic interpretation of the zero components g00
(–) and  g00

(+) of 

the metric tensors. 

We introduce the usage of the terms "external" and "internal" (and related terms: outer, outside, 

inside, internal, etc.) to describe the same vacuum region by two metrics with mutually opposite signa-

tures.  The lengths in the local "external" and "internal" vacuum regions are given by pseudo-Euclidean 

metrics (2.1.16) and (2.1.19) (see § 1.21) 

          ds(–)2 =   с2dt2 – dr2 – r2d 2 – r2sin2 d 2 = сdtсdt– dxdx–dydy– dzdz,            (2.1.37)    

          ds(+)2 = – с2dt2 + dr2+r2d 2+r2sin2 d 2 = – сdtсdt+dxdx+dydy+dzdz.            (2.1.38)   

We introduce the terms for linear (affine) forms:  

            ds(–) = сdt– dx– dy– dz         "Cover" on the outer side of the vacuum;           (2.1.39)  

            ds(–) = сdt– dx– dy– dz    "Inversion" of the outer side of the vacuum;            (2.1.40)  

            ds(+) = – сdt+ dx+ dy+ dz      "Cover" of the inner side of the vacuum;       (2.1.41)  

           ds(+) = – сdt+ dx+ dy+ dz "Inversion" of the inner side of the vacuum.            (2.1.42)  

Let the "cover" and "inversion" of one side of the vacuum move relative to their initially fixed 

state along an axis x with the same velocity vx, but in different directions. This is formally expressed by 

the coordinate transformation:  

 Fig. 2.1.5.        а) Graph of the function                              b) Graph of the function 

            ;                               
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                             t= t,      x = x + vx t,      y =  y,      z= z        For the "cover",        (2.1.43)  

                            t= t,     x = x – vx
 t,      y= y,     z= z        For the "inversion".       (2.1.44)  

A consequence of the equality of the velocities vx in the modules of the "covers" and "inver-

sions" due to the vacuum condition is that for every movement in the vacuum region there is a corre-

sponding contrary movement [22].    

Differentiating (2.1.43) and (2.1.44) and substituting the results of the differentiation to (2.1.37) 

and (1.38) in spherical coordinates we obtain metrics  

                                      dsv
(–)2= (1+ vr

(–)2/с2)с2dt2 – dr2 – r2d 2 – r2sin2 d 2,                        (2.1.45)   

                                      dsv
(+)2= – (1+ vr

(+)2/с2)с2dt2 + dr2 + r2d 2 + r2sin2 d 2,                    (2.1.46)    

describing the kinematics of translational motion of the "external" and "internal" sides of the local area 

of the vacuum region. It then is under the vacuum conditions:  

                                                           dsv
(–)2 + dsv

(+)2 = ds(0)2 = 0,                                               (2.1.47) 

The movement involved is compensated for by the contrary movement.  

Compare g00
(–) into the metrics (2.1.14) and (2.1.15) with g00

(–) in the metric (2.1.45) and g00
(+) 

in the metrics (2.1.17) and (2.1.18) with g00
(+) in the metric (2.1.46) respectively obtain:  

 

for the metric (1.14):     1– r0/r = 1+ vr
 (–a)2/c2     →   vr

(–a) 2 = – c2r0/r  →   vr
(–a) = (– c2r0/r)½ ;  (2.1.48)  

for the metric (1.15):     1+ r0/r = 1+ vr
 (–b)2/c2       →    vr

(–b)2 = c2r0/r    →   vr
(–b) = (c2r0/r)½ ;   (2.1.49)  

for t e metric (1.17):  – (1– r0/r) = – (1+ vr
(+a)2/с2)  →  vr

(+a)2 = – c2r0/r  →  vr
(+a) = (– c2r0/r)½; (2.1.50)  

for the metric (1.18):  – (1+ r0/r) = – (1+ vr
(+b)2/с2)  →   vr

(+b)2 =  c2r0/r  →   vr
(+b) = (c2r0/r)½     (2.1.51)  

 

These results suggest that the zero components g00
(–) of the metrics (2.1.14) & (2.1.15) and 

g00
(+) of the metrics (2.1.17) & (2.1.18) describe the motion of the relevant sub-layer of the vacuum 

region with speeds vr, as in (1.48) through (2.1.51), relative to their stationary state metrics given by 

(2.1.16) & (2.1.19).  

Although we have movement, precisely what is moving in the vacuum state is not known, be-

cause there is no mechanism in the description of matter in geometrophysics to detect it. However, for 

convenience, in a vacuum such processes can be compared with processes in a elastoplastic fluids.  

Terminology: We invented the terms "subcont", abbreviating "substantial continuum", and, corre-

spondingly, “antisubcont” to designate the components of such an environment. Provisional names of 

the layers of vacuum region are given in Table 2.1.1.  
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                                                                                                                                            Table 2.1.1 

Metric/ 
signature 

Number of 
metric 

Provisional name of terms 
Side of    
vacuum 

dsa
(–)2      

(+ – – –) 
(2.1.14) 

"a-subcont" - the outer side of the outer 
side of the vacuum region 

E 
X 
T 
E 
R 
N 
A 
L 

dsb
(–)2 

(+ – – –) (2.1.15) 
«b-subcont" - the inner side of the outer 

side of the vacuum region 

dsс(–)2 

(+ – – –) 
(2.1.16) 

original flat outer side 
of the vacuum region  

    

dsa
(+)2 

(– + + +) 
(2.1.17) 

"a-antisubcont" -  the outer side of the 
inner side of the vacuum region   

I 
N 
T 
E 
R 
N 
A 
L 

dsb
(+)2 

(– + + +) 
(2.1.18) 

"b-antisubcont"- the inner side of the 
inner side of the vacuum region 

dsc
(+)2 

(– + + +) 
(2.1.19) 

original flat inner side  
of the vacuum region  

 
Averaging the velocities (2.1.48) and (2.1.49), we find that the total motion of the affine layers 

of the outer side of the vacuum region (subcont) is described by the average velocity 

                                                    vrab
(–)(r) = ½[(– c2r0/r)½ + i(c2r0/r)½],                                     (2.1.52)   

and the velocity average (2.1.50) and (2.1.51), leads to the average velocity  

                                                      vrab
(+)(r) =½[(– c2r0 /r)½ + i(c2r0 /r)½].                                  (2.1.53)  

which describes the average (total) movement of the affine layer of the inside of the vacuum region (of 

the antisubcont). 

The modules of the complex functions (2.1.52) and (2.1.53) are equal  

                                                                         |vrab
(–)(r)| = 0,                                                    (2.1.54)       

                                                                         |vrab
(+)(r)| = 0 ,                                                   (2.1.55)      

which shows that the average velocity in the affine layers of the outer and inner sides of the vacuum 

region (subcont and antisubcont) with r0 = r is close to √
ଶ

ଶ
ܿ , with c – the speed of light, but as the ra-

dius r increases greater than r0, the velocity decreases in proportion to 1/r½, approaching zero.    

However, the squares of the velocities (2.1.48) and (2.1.49) are equal and opposite to one other           

vra
(–)2= – vrb

(–)2. Therefore, in the 2-braid (2.1.23), g00
() = 1.  

Similarly, the squared velocities (2.1.50) and (2.1.51) are equal and opposite each other              

vra
(–)2 = –vrb

(–)2. Therefore, in the 2-antibraidin(2.1.36), g00
(+) = 1.  

This circumstance determines the stability of the vacuum formation under consideration, since 

the number of "flowing" a-subcont is equal to the number of "flowing" b-subcont. 
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It should be noted that some additive combinations of metrics (2.1.14) through (2.1.16) and/or 

(2.1.17) through (2.1.19) are different solutions of the nonlinear Einstein field equations (2.1.6), lead-

ing to a more balanced metric-dynamic description of the local centrally symmetric vacuum formation 

than any one of them individually. The kinematics and dynamics of these vacuum layers and sub-

layers are discussed in the following chapters. 

 

2.2 The second vacuum second Einstein’s vacuum equations and their solutions 

Taking into account the following covariant derivatives of tensors are equal to zero: 

                                                     j gik = 0,                                                  (2.2.1)               

                                            ,0)
2

1
(  ikikj RgR

         
        

              
(2.2.2)       

 

Einstein supplemented equation (2.1.1) with another term (the so-called -term) 

                                        ,0
2

1
 ikikik gRgR

                                  
(2.2.3)

 

in the literature on general relativity often takes  = ± 3/ra
2 = constant, ra is the radius of the spherical 

vacuum formation.  

In this case   

                        ,0
22

1








  nR

n
RgRgRg ikikik

ik                     (2.2.4)    
 

whence  

                                                ,
2

2





n

n
R                               (2.2.5) 

whereupon the equation (2.2.3) takes the form  

                     .0
2

2

2






 ikikikikik g

n
Rgg

n

n
R                       (2.2.6) 

For 4-dimensional space: n = 4, R = 4, equation (2.2.6) takes the most simple form  

                                   0 ikik gR     or     















.

3

,
3

3
±

2

2

2

ik
a

ik

ik
a

ik

ik
a

ik

g
r

R

g
r

R

g
r

R                      (2.2.7)  

Equations (2.2.7) will be called the second Einstein’s vacuum equations. 

The solutions of the second vacuum equation (2.2.7) are the following set of generalized 

Kottler metrics with a signature (+ ), which we will arbitrarily call "convexity" in the vacuum ex-

tent: 
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                                2222

2

2

2
22

2

2
2)(

1 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds

a

ba

b 

























,               (2.2.8)        

                                2222

2

2

2
22

2

2
2)(

2 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds

a

ba

b 



















 ,            (2.2.9)        

                                 2222

2

2

2
22

2

2
2)(

3 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds

a

ba

b 



















 ,            (2.2.10)        

                                 2222

2

2

2
22

2

2
2)(

4 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds

a

ba

b 



















 ,              (2.2.11)   

 

                                 22222222)(
5 sin  ddrdrdtcds  ;                                       (2.2.12)     

 

and a set of generalized Kottler metrics with a signature ( + + + ), which we will arbitrarily call "con-

cavity" in the vacuum extent: 

                               ,sin

1

1 2222

2

2

2
22

2

2
2)(

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds

a

ba

b 



















        (2.2.13)        

                               ,sin

1

1 2222

2

2

2
22

2

2
2)(

2  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds

a

ba

b 



















             (2.2.14)       

                               ,sin

1

1 2222

2

2

2
22

2

2
2)(

3  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds

a

ba

b 



















             (2.2.15)       

                                 ,sin

1

1 2222

2

2

2
22

2

2
2)(

4  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds

a

ba

b 



















           (2.2.16)  

 

                               22222222)(
5 sin  ddrdrdtcds  .                                          (2.2.17)  

 

where rb is the constant of integration, analogous to b = r0 in the solutions (2.1.13).  
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Wherein, the metrics (2.2.12) and (2.2.17) are par-

ticular cases of the metrics (2.2.8)  (2.2.11) and (2.2.13) 

 (2.2.16), respectively, using  rb = 0  and  ra = . 

The sum of all metrics (2.2.8) through (2.2.17) 

again leads to the metric (2.1.21), which is also a trivial 

solution of (2.2.7).  

When ra =  and rb ≠ 0, the generalized Kottler 

metrics (2.2.8) through (2.2.17) is transformed into the 

generalized Schwarzschild metrics (2.1.14) through 

(2.1.19), while for rb = 0 and 1/ra = 1/r0 ≠ 0, the metrics 

(2.2.8) through (2.2.17) become the de Sitter metrics: 

   -  for the convex vacuum region (bulge), with signature 

(+   ):  

 

   2222

2
0

2

2
22

2
0

2
2)( sin

1

1  ddr

r

r

dr
dtc

r

r
dsа 



















 ,    

                                                           (2.2.18)                    

         ,sin

1

1 2222

2
0

2

2
22

2
0

2
2)(  ddr

r

r

dr
dtc

r

r
dsb 



















           

                                                           (2.2.19)                    

         22222222)( sin  ddrdrdtcdsc  ;                                       

                                                                      (2.2.20)   

 

- for the concave vacuum region (concavity) with signature ( + + +): 

                   

  ,sin

1

1 2222

2
0

2

2
22

2
0

2
2)(  ddr

r

r

dr
dtc

r

r
dsa 



















            (2.2.21)                    

            ,sin

1

1 2222

2
0

2

2
22

2
0

2
2)(  ddr

r

r

dr
dtc

r

r
dsb 



















              (2.2.22)                    

           22222222)( sin  ddrdrdtcdsc  .                  (2.2.23)  

Fig. 2.2.2 Rotation of the core of the 
vacuum formation 

Fig. 2.2.1 Graph of  lrc
() function - elongation 

of the vacuum extension in the core (i.e. with-
in a spherical cavity) 
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When ra = r0, the metrics (2.2.18) and (2.2.19) describes a closed convex (spherical) vacuum 

formation (i.e., the "core") in the range [0, r0] (Figure 2.2.1 and 2.2.2). This describes a region that has 

been defined as a vacuum cavity in the solution of the first vacuum equations (2.1.6) (Figure 2.1.2). 

The arithmetic average of the two metrics (2.2.18) and (2.2.19) forms a 2-braid:  

                                         

  .sin

1

2222

4
0

4

2
222)(  ddr

r

r

dr
dtcdsab 











                    (2.2.24)    

Substituting components gii
0() and gii

(), respectively, from (2.2.20) and (2.2.24) into (2.1.32), 

we obtain the relative lengthening of the one of side of vacuum  

                         ,0)( 
tl    11

44
0

4
0)( 







rr

r

r

r
lrc ,  0)( 

l ,   0)( 
l .                (2.2.25) 

The graph of the function lrc
(–) (2.2.25) (relative elongation of the vacuum extension in the radi-

al direction in the core) is shown in Figure 2.2.1. 

Thus, Einstein's second vacuum equation (2.2.7) describes not only the outer shell of the vacu-

um formation surrounding the spherical cavity (Figure 2.1.2), but also the core of this vacuum for-

mation filling this cavity (Figure 2.2.1, 2.2.2). 

In the general case, metrics (2.8) through (2.11) should be written as: 
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In this case, the 4-braid composed of metrics (2.2.25a)  

                            ds1-4
(–)2 = 

4
1 (ds1

(–)2+ ds2
(–)2 +ds3

(–)2+ ds4
(–)2),                                  (2.2.25b)                    
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can be recorded as 

                22222222)(
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Such a 4-braid ds1-4
(–)2 is formed by eight twisted “threads” (i.e. linear forms) dsi

(–) forming a system of 

two complex conjugated quaternions: 

                                    ds1-4
(–) ‘ = 

4
1 (ds1

(–)’ + ids2
(–) ‘+ jds3

(–)’+kds4
(–)’),                          (2.2.26)   

                                    ds1-4
(–)”  = 

4
1 (ds1

(–)” – ids2
(–)” – jds3

(–) “– kds4
(–)”),                          

whose product is equal to (2.2.25b).                                     . 

Comparing g00
() in the metrics (2.2.18) and (2.2.19) with g00

() in the metric (2.1.45) and g00
(+) 

in the metrics (2.2.21) and (2.2.22) and with g00
(+) in the metric (2.1.46), we find  the speed of move-

ment of the vacuum layers at each point of the "core" of the vacuum formation (Figure 2.2.1):  

for the metric (2.2.18):     1 + r2/r0
2 = 1+ vra

(–)2/c2  →   vra
(–)2 =  c2r2/r0

2     →   vra
(–) =  cr/r0;   (2.2.27)                    

for the metric (2.2.19):     1 – r2/r0
2 = 1+ vrb

(–)2/c2  →   vrb
(–)2 = –c2r2/r0

2   →   vrb
(–) = – cr/r0; (2.2.28)                    

for the metric (2.2.21):  – (1+ r2/r0
2) = – (1+ vra

(+)2/с2) → vra
(+)2 = c2r2/r0

2 →  vra
(+) = cr/r0;   (2.2.29)                     

for the metric (2.2.22): – (1 – r2/r0
2) = – (1+ vrb

(+)2/с2) → vrb
(+)2 = –c2r2/r0

2 → vrb
(+) = – cr/r0. (2.2.30)         

From the expression (2.2.27) through (2.2.28) of the movements in mutually opposite direc-

tions, we find that the speed of the vacuum layers vra
(–) = – vrb

(–) in the center of the core (at r = 0; Fig-

ure 2.2.1) is zero, and on the periphery of the core with radius r0,  they move with the speed of light c.  

More physical is the situation when the core of the vacuum formation rotates. According to the 

classification given in the Table 2.1.1, the a-subcont rotates in the periphery of the core at the speed of 

light vra
(–)(r0) = с (Figure 2.2.2). Then the a-subcont spirals inward, decelerating as it approaches   the 

center of the core, where it stops [vra
(–)(0) = 0] and turns into a b-subcont. In its turn, the b-subcont 

flows outward in a spiral from the center of the core, starting with the velocity  vrb
(–)(0) = 0 and accel-

erating, ending with its rotation at the periphery of the core at the speed of light (vrb
(–)(r0) = с) (Figure 

2.2.2), where it is converted into an a-subcont. 
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Thus, the intra-core ab-subcont "processes" the loop, and support the strongly deformed pe-

riphery of the core of the vacuum formation (Figure 2.2.1) at a steady state.  

 

2.3 The non-Riemannian geometry with torsion and rotation 

In the previous paragraph, it was noted that the study of stable vacuum entities should take into 

account the rotation of their "core", therefore touch on some aspects of geometry with torsion and rota-

tion.  

Of all non-Riemannian geometries, one of the most important is the geometry of Riemann-

Cartan space with absolute parallelism, which was often used by Einstein [50, 54]. The Riemann-

Christoffel curvature tensor uses this, as given in [27]. We the curvature equal to zero as follows: 

                                     ,0;;  





















 KKKKKKRQR               (2.3.1)  

where the Riemann curvature tensor is  ܴߥߤߚ
ߚ ൌ ߜ

ߤݔߜ
Γߥߚ
ߚ െ ߜ

ߥݔߜ
Γߤߚ
ߚ ൅ Γߪߤ

ߚ Γߥߚ
ߪ െ Γߪߥ

ߚ Γߤߚ
ߪ  and the other terms 

are based on the contortion tensor, using the lowering of the indices via ܳఓఔఒ ൌ ݃ఒఈܳఓఔఈ  

ఓఔఒܭ                                         ൌ
ଵ

ଶ
൫ܳఓఔఒ െ ܳఔఒఓ ൅ ܳఒఓఔ൯ ,                                      (2.3.2)       

which in its turn is based (by lowering of the indices) on the torsion tensor 

                                                                   ܳఓఔఒ ൌ  Γఓఔఒ െ Γఔఓఒ  .              (2.3.3)  

The identity (2.3.1) means that in absolute parallelism geometry, the components of the Rie-

mann curvature tensor are fully compensated by torsion. In this case, instead of (2.2.7) in the geometry 

based on the variational principle, one obtains the Einstein-Cartan equation [27]    

                                        ,2
1

 YgRgR                          (2.3.4)                       

where           












 KKKKgKKKKKKKKY  2

1       (2.3.5)                    

                    

 QQK 2  is the trace of the contortion tensor.                                             (2.3.6)                     

This equation looks as if the torsion of space, or rather the rotational inertia as explained in 

[49], is the source of its curvature. Investigating more closely, one sees that the converse is the case, 

whereby the curvature of space is the source of its torsion.  

In the works of R. Vaytsenbeka, D. Vitali and G. Shipov, absolute parallelism geometry also 

received full geometrized treatment using the equation [49]   

                                              
,2

1
jmjmjmjm ФgRgR                        (2.3.7)  

where the right side is expressed in the formal terms of reference:  

                                         ;)(
2

1
2









 s
np

i
is

i
npi

pn
jm

s
mj

i
is

i
mjijm gg          (2.3.8)     

is the Vaytsenbek - Vitali - Shipov tensor;  
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                                     ......  s
mjks

s
mkis

imi
jk

i
jk ggg                                  (2.3.9)                       

is the Ricci rotation coefficients;  

                                                               a
kj

a
jk

i
a

i
jk eee ,,2

1                                            (2.3.10)  

is the non-holonomicity object; eakare components of the unit vector of a rotating 3-D reference basis.  

Different approaches by Cartan - Schouten and Vaytsenbek - Vitali - Shipov to constructing 

geometries with torsion and rotation characterize the different types of rotational space. If the Yμν ten-

sor characterizes the motion vector at the start of the trial and the curved region of the rotating vacuum, 

the tensor Фik characterizes the torsional rotation around the center of reference in 3 dimensions.  

In general, the equation is fully geometrized  

                                                          
.2

1
 ФYgRgR 

                                  (2.3.11)  

However, existence not equal to zero of the right-hand sides of equations (2.3.6), (2.3.7) and 

(2.3.11)  leads inevitably to an unstable condition of the vacuum region, because tensors Yμν and Fμν 

are both nonzero, so that they obey: 

                 0)()(
)(

)( 



 ikik

l
kjikik

l
ijj

ikik
ikikj ФYГФYГ

x

ФY
ФY ,         (2.3.12)                    

instead of the law of conservation   

                                                       (Yik  + Фik )/xk = 0,                                     (2.3.13)                 

Thus, for stable vacuum formations all the components of the Cartan-Schouten tensor Yμν and 

the Vaytsenbek - Vitali - Shipov tensor Фik should be equal to zero. Thus the identity (2.3.11) falls into 

a system of two or three equations  
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1
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
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,02
1


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Ф

Y

gRgR

             (2.3.14)  

It is important to note that in Riemann - Cartan, space is unbalanced due to the asymmetry of 

the Christoffel symbol and the Ricci tensor Rμν ≠ Rνμ. But in the particular case of  = 0, Yμν = 0 and             

μν = 0 (or Yμν + μν = 0) of the equations (2.2.5) and (2.3.11), Rμν = 0 and Rνμ = 0, so they are identi-

cally equal  RR  .  

This corresponds to these types of spins and vacuum twists which do not affect the Ricci tensor 

Rμν, but they can influence the curvature tensor components. It seems that a certain amount of space is 

rotated with respect to the external observer, but those who are within its scope almost do not feel this 

rotation. As a rough example, it is very difficult to feel that the Earth's surface rotates for those on it. 

However, there are effects indicating the presence of inertial forces caused by the rotational motion of 
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the planet, for example, the deviation of the pendulum of Foucault, the different slopes of the left and 

right banks of rivers, etc. It is this type of rotation of the core of the vacuum formation that we have 

treated in § 2.2 (Figure 2.2.2). 

 

2.4 The extended (third) Einstein’s vacuum equation  

Up to this point, sets of solutions of Einstein’s vacuum equations (2.1.6) and (2.2.7), well 

known to specialists, were considered. In this paragraph, it is proposed for the first time to consider an 

extended version of these equations. 

Due to the properties of the components of the metric tensor (2.2.1), it is easy to show that  

                                                                  j gik = j gik = 0.                                  (2.4.1)   

The following equality is also obvious    

  ,0... ... 321321   ikjikjikjikjikikikikj gggggggg
      (2.4.2)  

where 1, 2, ... , 

  
are constants. 

 Therefore, guided by the same considerations that led Einstein to introduce  as a member of 

equation (2.2.3), we can write  

                
,0...

2

1
321   ikikikikikik ggggRgR

                (2.4.3) 

   or     

                                  
  ,0...

2

1
321   ikikik gRgR

                   (2.4.4) 

where k = 3/rk
2, here rk  is the radius of the kth spherical vacuum formation. 

If   1 + 2 + 3 +…+ ∞ = Λ0  (i.e., if the sum of this series converges to Λ0), then equation 

(2.4.4) is reduced to the form of equation (2.2.3). 

Indeed, in this case, equation (4.4) reduces to the form (2.2.3) 

                                  .0
2

1
0  ikikik gRgR

                                (2.4.5)                          

Combining equation (2.4.4) with gik, we get  
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      (2.4.6)                 

whence  

                                  
.

2

2

2

2
0

1







 


 n

n

n

n
R

k
k

                                (2.4.7)            

Substituting (2.4.7) into (2.4.6), for n = 4 we obtain the simplest (for the case) version of the 

extended Einstein’s vacuum equation 

                                        .0
1

 


k
kikik gR                                         (2.4.8) 

This expression will be called the "third Einstein’s vacuum equation”  

The series in equation (2.4.4), taking into account (2.4.7) and n = 4, converges to R/4 either:  

                             absolutely:           ,
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                                   (2.4.9) 

                                   or 

                       sign-variable:         .
4

13
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20

R
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N

k k

kk  




                                        (2.4.10) 

where Nk represents a sequence of numbers.  

Of particular interest is the average of the Ricci-flat vacuum region with Rik = 0 because of its 

correlation with Ricci-flat Calabi-Yau spaces. In this case, according to (2.4.7) and (2.4.8), we have: 

                                         0
1

0  


k
k  and  R = 0,                                         (2.4.11)    

the system of equations (2.3.14) breaks up into a system of two or three equations: 
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2.5 Solutions of the third Einstein’s vacuum equations 

Consider the most important (in the opinion of the author) case when the third Einstein’s vacu-

um equation (2.4.8) has the form  

             
                                        

00  ikik gR ,                                            (2.5.1)       

                        

where                            013
1

2
1
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 k k

kk

k
k r

N
                     (2.5.2)            

                                   

is an alternating series which is equal to zero.  

First of all, we find the solution of equation (2.5.1) for  

                                                    0
1




k
k .                                            (2.5.3)   

The form of the equation (2.5.1) completely coincides with the form of the second Einstein’s 

vacuum equation (2.2.7). Therefore, the solutions of equation (2.5.1) are the generalized Kottler met-

rics similar to metrics (2.2.8) – (2.2.17): 

- with signature (+ – – –), for a "convex" vacuum formation 
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          22222222)(
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     - with signature (+ – – –), for a "convex" vacuum formation 
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where               
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whereby we may substitute b = rf  in the solution to (2.1.13).  

Further will be considered two private, but, in the author's opinion, important cases which we 

will conditionally call "Hierarchy of ten spheres" and "Lucas-Fibonacci Branches". 

Terminology (translator’s notes): The two cases may appear isolated, but together their solu-

tions relate to one another in ways yielding unexpectedly fruitful results. The author considers these 

important enough to baptize them with names. Just as Gell-Mann could allude to a term from Bud-

dhism to coin his Eightfold Way, so too we allude to a couple of terms out of an ancient Jewish tradi-

tion in order to coin our terms for the organization presented in the next two sections. The first set of 

results (§ 2.6) is dubbed the "Hierarchy of ten spheres", while the second (§ 2.7) is baptized “Lucas-

Fibonacci Branches".   

 

 

 



 104

2.6 Hierarchy of ten spheres 

We investigate the special case where the series (2.5.14) and (2.5.15) have the simple form:  
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Consider a series of separate positive and negative terms  
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We substitute the series (2.6.3) in the metric (2.5.4) through (2.5.7) instead of the series 

(2.5.14) and (2.5.15) and take into account that we can write  
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The result is a 5 metric with signature (+   ):  
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                                                                         (2.6.13) 

Similarly, substitution of series (2.6.4) in the metric (2.5.10) through (2.5.13) affords metrics 

with the antipodal signature ( + + +):  

        .sin 22222222)(
5  ddrdrdtcds                                                       (2.6.14)    

  

  ,sin

11111

11111

11111

11111

2222

2

1

2
10

2
1

2
1

2
2

2
2

2
3

2
3

2
4

2
4

2
5

2
5

2
6

2
6

2
7

2
7

2
8

2
8

2
9

2
9

2
10

22

2
10

2
1

2
1

2
2

2
2

2
3

2
3

2
4

2
4

2
5

2
5

2
6

2
6

2
7

2
7

2
8

2
8

2
9

2
9

2
10

2)(
4

 ddr

dr

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

dtc

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

ds























































































































































































































































    (2.6.15)

  

  

  ,sin

11111

11111

11111

11111

2222

2

1

2
10

2
1

2
1

2
2

2
2

2
3

2
3

2
4

2
4

2
5

2
5

2
6

2
6

2
7

2
7

2
8

2
8

2
9

2
9

2
10

22

2
10

2
1

2
1

2
2

2
2

2
3

2
3

2
4

2
4

2
5

2
5

2
6

2
6

2
7

2
7

2
8

2
8

2
9

2
9

2
10

2)(
3

 ddr

dr

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

dtc

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

ds























































































































































































































































 (2.6.16) 



 107

  ,sin

11111

11111

11111

11111

2222

2

1

2
10

2
1

2
1

2
2

2
2

2
3

2
3

2
4

2
4

2
5

2
5

2
6

2
6

2
7

2
7

2
8

2
8

2
9

2
9

2
10

22

2
10

2
1

2
1

2
2

2
2

2
3

2
3

2
4

2
4

2
5

2
5

2
6

2
6

2
7

2
7

2
8

2
8

2
9

2
9

2
10

2)(
2

 ddr

dr

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

dtc

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

ds























































































































































































































































        (2.6.17) 

  

  .sin

11111

11111

11111

11111

2222

2

1

2
10

2
1

2
1

2
2

2
2

2
3

2
3

2
4

2
4

2
5

2
5

2
6

2
6

2
7

2
7

2
8

2
8

2
9

2
9

2
10

22

2
10

2
1

2
1

2
2

2
2

2
3

2
3

2
4

2
4

2
5

2
5

2
6

2
6

2
7

2
7

2
8

2
8

2
9

2
9

2
10

2)(
1

 ddr

dr

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

dtc

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

ds























































































































































































































































    (2.6.18)             

 

We now consider what the radii rk in the metric expressed by (2.6.5) through (2.6.18) may 

equal. It is natural to assume that in a fully geometrized physics only geometric constants must be pre-

sent. These constants may include: Rv, the parametric radius of the Universe; and lс ≈ с Δt ≈ с · 1 sec ≈ 

2,9·1010 cm that is, the distance traveled by the beam of light in a vacuum during a single time interval 

Δt = 1 second. 

Assuming that the radii rk in the metric (2.6.5) through (2.6.18) is estimated as the ratio  

                                                                         rk ~ Rv
2/lсk ,                                    

where lсk = (2,9·1010) k cm is the distance obtained by raising the number 2.9·1010 to the power of k.            

If we assume that Rv ≈ 1025 cm, we get the approximate relation  

 

                                                             k
ck

v
k l

R
r

)109.2(

10
~

10

502


 cm,                                   (2.6.19)  

 

which implies a hierarchical sequence of the radii of the ten spheres. 
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Terminology: Before proceeding, we must note that some of the entities here are analogues to, 

and sometimes overlapping with, measurements related to measurable subatomic particles, although 

the new entities are more general and not necessarily directly measurable, for the moment only ap-

pearing in calculations. (We leave aside the philosophical considerations as to whether all terms in a 

calculation must correspond to a real physical entity when the end result is just the same. The recur-

ring debate on the “reality” of the wave function is an example that both sides have a basis to justify 

their positions. As well, many terms graduate from purely mathematical entities to representations of 

real entities, such as was the case with the positron, the neutrino, and countless other entities that we 

regard today as real).  

In this work, the names of the individual particles are put into guillemets, for exampel:  «elec-

tron», «muon», etc. In this way metric-dynamic models of given local vacuum entities of Alsigna are 

clearly distinguished from the corresponding particles in the Standard Model and in String Theory.  

The usual analysis breaks up an entity into sub-entities, which are then broken down in their 

turn, each layer using a different structure until one arrives at elementary particles. The structure 

proposed in this paper, on the other hand, is available at all levels, even for the elementary particles.   

The terms for the constituents at one layer below the «parti-

cles», use one coined word:  “particelle” (coined from “particle” 

and “organelle”), and three other terms: “scope”, “outer shell ”, 

and “abyss”; the usage of these latter three terms should be clearly 

distinguishable by the context from those of other contexts. In fact, it 

would be more useful to consider these as structures, applicable to a 

wide variety and scale of physical entities, than as particles. This 

difference is emphasized in the list below (6.20). The reader will 

immediately note in that list, whereas many of the numbers could correspond to directly measurable 

quantities, others clearly do not. For example, lengths are given that are beyond the range of meas-

urement: bigger than the observable universe, and smaller than the Planck distance.  

Of course, we could have left each rk named simply “rk” for respective values of k. However, 

we hope that the names assigned will serve as an aid to intuition, whereby one should not take the 

names any more literally Lengths r2 through r6 are within an order of magnitude of well-known physi-

cal measurements.   
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Furthermore, we do not use a zero length for 

any particle, because we do not really use particles in 

the classic sense. After all, particles are defined as 

stable local deformations of  vacuum. We uses the 

word “particle” for convenience, although it is stable 

area of strong deformations and bound intra-vacuum 

currents. 

With this preamble, we can now proceed to 

calculations using the approximate recurrence rela-

tion (6.19): 

                                                   (6.20) 

r1 ~ 3,4·1039 cm:  ~ «Universe» inner core ;           

r2 ~ 1,2·1029 cm: ~ «metagalaxy» inner core; 

r3 ~ 4·1018 cm: ~ «galaxy» inner core; 

r4 ~ 1,4·108 cm: ~ «star» or «planet» inner core; 

r5 ~ 4,9·103 cm: ~ biological «cage» inner core; 

r6 ~1,7·1013 cm: ~ core of an elementary  

                               «particle»;    

r7 ~ 5,8·1024 cm: ~ core of an «protoquark»;  

r8 ~ 2,1·1034 cm: ~ core of an «plankton»;   

r9 ~ 7·1045 cm: ~ core of an «phytoplankton»;  

r10 ~ 2,4·1055 cm: ~ core of an «instanton». 

 The radii r2, r3, r4 and r5 are commensurate 

with the average radii of the nuclei of real spherical 

formations: metagalaxies, galaxies, stars (planets) 

and biological cells, and the radius r6 practically co-

incided with the "classical radius" of an electron of 

2,8·10-13cm. Therefore, it is possible that the re-

maining radii r1, r7, r8, r9 and r10 of this sequence 

also correspond to the average radii of the spherical 

formations that inhabit the world. 

Fig. 6.1. The sequence of nested 
spherical vacuum formations 

Fig. 6.2. Hierarchy of ten nested spheri-
cal vacuum formations 
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Fig. 2.6.2 a.  Fractal illustration of the hierarchy of nested spherical vacuum formations 

 

Metrics (2.6.9) through (2.6.18) are the solutions of the simplified to ten Λi-terms of Einstein's 

third vacuum equation (2.5.1):                
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In the hierarchy of the radii rk (2.6.20), these solutions describe a sequence of nested spherical 

vacuum formations (Figures 2.6.1, 2.6.2).  

For example, consider one of the vacuum degree of the hierarchy (2.6.20) with a radius              

r6 ~1,7·1013 cm corresponding to the characteristic size of the "core" of “elementary particles”. All 

other vacuum formations of the hierarchy considered here (2.6.20) are arranged similarly. 
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The radius of the core of such a formation 

is almost the same as the Thompson scattering 

length (aka the Lorenz radius). Despite the fact 

that the Thompson scattering length, 2,8·1013cm, 

is unrelated to the actual size of the electron, it is 

called the “classical radius of the electron”. Since 

this length is the same order of magnitude of the 

value for the radius r6 ≈ 1,7·1013cm of this for-

mation, we find it fitting to dub the «particle» at 

this scale the «electron».  

In the metrics (2.6.9) through (2.6.12) will 

leave only those composed which contain radii          

r6 ~ 1,7·1013cm. As a result, we obtain the follow-

ing multilayer metric-dynamic model of «electron» 

(i.e. convex vacuum formation) with a core radius 

almost equal to "the classical radius of electron"          

re ≈ 2,8·10-13 cm:  

 

                                                       «Electron»            (2.6.22)  
The «electron» is a convex multilayer vacuum formation 

with signature (+ – – –) 
consisting of: 

 
[a] Тhe outer shell of the «electron»  

in the interval [r5, r6] (Figure 2.6.3) 

                                 2222

2
5

2
6

2
22

2
5

2
62)(

1 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds 



















 ,               (2.6.23)         

                                2222

2
5

2
6

2
22

2
5

2
62)(

2 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds 



















 ,                  (2.6.24)           

                               2222

2
5

2
6

2
22

2
5

2
62)(

3 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds 



















 ,                   (2.6.25)          

                               2222

2
5

2
6

2
22

2
5

2
62)(

4 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds 



















 ;                 (2.6.26) 

                                                        



 112

                                                          [b] The core of the «electron» 
  in the interval [r6, r7] (Figure 2.6.3) 
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[c] The scope of the «electron» 
in the interval [0, ] 
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Fig. 2.6.3 Outer shell, abyss (rakya), core and the internal particelle of the elementary «particle» 

Abyss 
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Similarly, in the metrics (2.6.15) through (2.6.18) we leave only those terms that contain the 

radii r6. As a result, we obtain the following metric-dynamic model of a conditionally concave vacuum 

formation, which we will call the «positron» (exact antipode to an «electron»): 

 

                                                     «Positron»                                             (2.6.32)  
The «positron» is a concave vacuum formation  

with the signature  

( + + +) 
consisting of: 

 
[a] The outer shell of the «positron» 

in the interval [r5, r6]  
(Figure 2.6.3) 
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[b] The core of the «positron» 
in the interval [r6, r7] (Figure 2.6.3) 
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[c] The scope of the «positron» 

in the interval [0, ] 

                                       22222222)(
5 sin  ddrdrdtcds  ;                              (2.6.41)    

 

The sets of metrics (2.6.23) through (2.6.31) and (2.6.33) through (2.6.41) differ only in signa-

ture. That is, «electron» (2.6.22) and «positron» (2.6.32) are completely identical antipode copies of 

each other. If the «electron» is conventionally called the "convexity" of the vacuum extent, then the 

«positron» is exactly the same "concavity" of it. 

Figure 2.6.3 shows a geometricized model of a spherical vacuum formation with subfor-

mations, using radii of the hierarchy (2.6.20).  

Taking, for example, the «electron» (or its antipode, the «positron»), the formation represented 

in Figure 2.6.3 would have: a "core" with a radius r6 ~ 1,7·1013 cm; an inner particelle with a radius r7 

~ 5,8·1024 cm and an outer shell extending from r6 ~1,7·1013cm to r5 ~4,9·103cm (or to r4~1,4·108 

cm, or up to r3 ~ 4·1018 cm, etc., depending on in which spherical formation  there is an core of the 

«electron»).    

In another case, for example, «planet» inner core has a radius r4 ~ 1,4·108 cm; its particelle has 

the radius r5 ~ 4,9·103cm (or, r6 ~ 1,7·1013 cm, etc., depending on which spherical formation is found 

in the «planet» inner core) and the outer shell extends from r4 ~ 1,4·108 cm to r3 ~ 4·1018 cm (or until 

r2 ~ 1,2·1029 cm, or up to r1 ~ 3,4·1039 cm). 

The "scope" (2.6.31) or (2.6.41) of a spherical vacuum formation begins at its the center and 

ends at infinity. The scope represents a kind of memory of the undeformed portion of the considered 

vacuum area. It is almost as if it does not exist in the curved portion of the vacuum state, but according 

to equation (2.1.32), the relative elongation and deformation of the vacuum section cannot be deter-

mined without the gii
0(–)  of the scope.   

Тhe «abyss» (rakya) (Figure 2.6.3) is a spherical boundary between the core and the outer shell 

of any spherical vacuum formation. 

 

2.7 Lucas-Fibonacci branches 

We return to the series (2.5.2)  
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Among the many numerical sequences, the familiar Fibonacci sequence, 0,1,1,2,3,5,8,11... oc-

cupies a special place. It may be extended to the negative numbers, yielding the less familiar “negafib-

onacci numbers”:                                                                                                                        (2.7.2) 



 115

F8 F7 F6 F5 F4 F3 F2 F1 F F F F F F F F F 

21 13 8 5 3 2 1 1 0 1 1 2 3 5 8 13 21 

 

We can also modify it to “seed” the beginning two numbers of the recursion, using  0  and –1 

for the seeds, yielding  

                                ... 21,–13, 8, –5, 3,–2,1,–1, 0,–1,–1,–2,–3,–5,–8,–13,–21...            (2.7.3) 

 All of these follow the recursion relation 

                                                       Fn = Fn1 + Fn2. 

We may now use the negafibonacci numbers for our sequence Nk in the series (2.7.1), labeling 

the nth term in the sequence Fn for integer n, yielding    
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Also Lucas numbers can be used, which are defined by the recurrence formula  

          Ln=Ln1 +Ln2   for   L0= 2   and   L1= 1;    or   nnnn
nL  )()1(  ,  

 

      (2.7.5) 

where the golden section  Phi, 
2

51 
 . 

One example of a Lucas sequence occurs by using the values 2 and 1 for n = 0, 1:  

                                                        Ln:    2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, …                        (2.7.6) 

In this case, (2.7.1) can take the form    

                                            0)(3
1

2

'

1
2

1
0 


 











 n k

n

n k

n

n
nk r

L

r

L
.                             (2.7.7)                      

Taking into account the third Einstein field equations (2.7.4) and (2.7.7), the equation (2.5.1) 

can be written as           
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Since the conditions (2.7.4) and (2.7.7) are similar to (2.5.2), the solution of equation (2.7.8) 

will be similar to the solution of equation (2.5.1). The difference is that in the metrics (2.5.4) through 

(2.5.13) one should not substitute the series from (2.5.14), but rather, for the general case, the series  
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It is necessary to expect that the vacuum equations may include the Fibonacci numbers Fn, the 

Lucas numbers Ln and φ (the golden section), as they contribute to the harmony of so many other phe-

nomena in nature. We follow up on this expectation.   

Combining the results of this and previous points, we arrive at the following model of the phys-

ical universe: the hierarchical sequence of tenspheres with radii rk (2.6.20) acts as a "trunk" and the 

solutions of equation (2.7.8) look like Lucas-Fibonacci branches radiating in all directions from this 

grand trunk.  

Now we may ponder the following question. If the right sides of the Einstein field equations 

(2.1.6), (2.2.7) and (2.4.8) are equal to zero, leading to a state with no mass, what, then, fills the void? 

In the framework developed here, this void is filled with a variety of spherical convex and con-

cave vacuum formations with different radii (see Figures 2.6.1, 2.6.2 and 2.6.2 a), which interact with 

each other by means of vacuum currents. This is, however, not ether or Descartes’ vortices, as we shall 

outline in the following outline.      

Current interactions (electromagnetic, nuclear, and gravitational) between sphere vacuum for-

mations of different scales are described in Chapters 5, 8, and 9. 

 

2.8 The elements of the Algebra of signatures 

We return to the metrics (2.1.16) and (2.1.19), which for brevity can be represented in a Carte-

sian coordinate system:  

ds(+ – – –)2 =     с2dt 2 – dx2 – dy 2 – dz2  =      x0
2 – x1

2 – x2
2 – x3

2 = 0  with signature (+ – – –),    (2.8.1)    

ds(– + + +)2 = – с2dt 2 + dx2 + dy 2 + dz 2 = – x0
2 + x1

2 + x2
2 + x3

2 = 0   with signature ( + + +).      (2.8.2)  

Here we use the following conventions:  

      s(+ – – –)2 = ds(–)2,    s(– + + +)2 = ds(+)2,    x0
2 = с2dt 2,    x1

2 = dx2,    x2
2 = dy 2,     x3

2= dz2.            (2.8.3)                                

These metrics are solutions at the same time all three vacuum equations (2.1.6), (2.2.7) and (2.4.8). 

In addition to the metrics (2.8.1) and (2.8.2) with signatures (+ ) and ( + + +), 14 other 

possible metrics can be written with the corresponding signatures {see (1.11.1) and (1.13.7)}   
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Operations on the metrics (2.8.4) and (2.8.5) will be carried out componentwise, so we will call 

such aggregate metrics "ranks" (see Сhapter 1).  

Instead of the uniform terms in the ranks (2.8.4) and (2.8.5) being summed up directly, they can 

be summed up using only signs preceding these terms. So for brevity, instead of ranks (2.8.4) and 

(2.8.5), we can use the following equivalent ranks:  

 

 

  

 

 

 

 

 

The subscripted sign after the brackets (...)+ indicates what operation is done with the numbers 

corresponding to the characters in the columns and/or rows; that is, (...)+ for addition, (...)for subtrac-

tion, (...) for division and (...)× for multiplication (see Definition 1.10.2). Although the other operations 

could be also defined componentwise, excluding division by zero, we shall not do so here, as presently 

we are only concerned with addition.   

The metrics with the above features, as ranked in (2.8.4) and (2.8.5), are not solutions of the 

Einstein field equations (2.1.6), (2.2.7) and (2.4.8). This can be verified by direct substitution of the 

metric tensor components of these metrics in the corresponding equations. 

None of the metrics above the line, i.e. in the numerators of the ranks (2.8.4) and (2.8.5), are 

solutions of the Einstein field equations (2.1.6), (2.2.7) and (2.4.8). This can be verified by direct sub-

stitution of the metric tensor components of these metrics in these equations. 

However, regard the result from, for example, summing (as earlier explained) the first seven 

metrics of the ranking (2.8.4); it is the metric with signature (+   ): s(+ – – –)2 = x0
2 – x1

2– x2
2 – x3

2 = 0. 

(In order to make this calculation, one can simply add up the respective columns.)  

Similarly, the sum of the first seven metrics ranked by (2.8.5) is wound with the opposite met-

ric signature ( + + +):  s(– + + +)2  =  – x0
2 + x1

2 + x2
2 + x3

2 = 0.  

Therefore, vertically summing up the seven metrics of (2.8.4) and/or (2.8.5), leads to solutions 

of the Einstein field equations (2.1.6), (2.2.7) and (2.4.8):              

 

 

                                                       

                                                                                                                                        (2.8.7)          

 (+   +   +   +) 
 (–   –   –   + ) 
 (+   –   –   + ) 
 (–    –  +   – ) 
 (+   +   –   – ) 
 (–   +   –   – ) 
 (+   –   +   – ) 
 (+   –   –    –)+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

(–  –   –   – ) 
(+  +   +  – ) 
(–  +   +  – ) 
(+  +   –   +) 
(–   –   +  +) 
(+  –    +  +) 
(–   +   –  +) 
(–   +   +  +)+ 

= 0 
= 0 
= 0 
= 0                                    (2.8.6)     
= 0 
= 0 
= 0 
= 0 , 
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           ds(+– – –)2 = ds(+ + + +)2  + ds(– – – +)2  + ds(+ –  – +)2 + ds(– – + –)2 + ds(+ + – –)2 + ds(– + – –)2 + ds(+ –  + –)2 ,          

           ds(– + + +)2 = ds(– – – – )2 + ds(+ + +  –)2 + ds (– + + –)2 + ds(+ + – +)2+ ds(– – + +)2 + ds(+ – + +)2  + ds(– + – +)2.           

 

The same is true of horizontal sums of the above. For example,  

 

                     ds(+ – – +)2  + ds (– + + –)2 = 0·с2dt2 + 0·dr2 + 0·d 2+ 0·sin2 d 2 = ds (0 0 0 0)2.         (2.8.8)   

  

In addition, the sum of all 16 metrics of (2.8.4) and (2.8.5) is a solution of the given vacuum 

equations    

                             ds2 =  ds(+ – – –)2 + ds(+ + + +)2 + ds(– – – +)2 + ds(+ – – +)2  +  

                                    +  ds(– – + –)2  + ds(+ + – –)2  + ds(– + – –)2  + ds(+ – + –)2 +                        (2.8.9)   

                                    +  ds(– + + +)2 + ds(– – – – )2 + ds(+ + + –)2 + ds(– + + –)2 + 

                                    +  ds(+ + – +)2  + ds(– – + +)2 + ds(+ – + +)2  +  ds(– + – +)2 = ds (0 0 0 0)2 = 0. 

An equivalent representation of a signature of expression (2.8.9) has the form  

 

                              (+ – – –)  +  (+ + + +)  +  (– – – +)  +  (+ – – +) +  

              +  (– – + –)  +  (+ + – –)  +  (– + – –)  +  (+ – + –) +                                    (2.8.10)       

              +  (– + + +)  +  (– – – –)   +  (+ + + –) +  (– + + –) + 

              +  (+ + – +)  +  (– – + +)  +  (+ – + +)  +  (– + – +)  =  {0 0 0 0}.      

  

A structure based on these ranks takes the form of “vacuum conditions": 

 

 

0 =  
0 = 
0 = 
0 = 
0 =   
0 = 
0 = 
0 = 
0 = 
0 =  

 ( 0   0   0   0) 
 (+   +   +   +) 
 (–   –   –   + ) 
 (+   –   –   + ) 
 (–   –   +   – ) 
 (+   +   –   – ) 
 (–   +   –   – ) 
 (+   –   +   – ) 
 (–   +   +   +) 
 (0   0    0   0) + 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

(0   0   0   0) 
(–  –   –   – ) 
(+  +   +  – ) 
(–  +   +  – ) 
(+  +   –   +) 
(–   –   +  +) 
(+  –    +  +) 
(–   +   –  +) 
(+   –   –  –) 
(0   0   0   0) + 

= 0 
= 0 
= 0 
= 0 
= 0       
= 0 
= 0 
= 0 
= 0 
= 0 

                                                                                                                                       (2.8.11)  
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Fig. 2.8.1. Fractal illustration of the superposition and 

interlacing of sixteen 4-dimensional spaces with different 
signatures (topologies) 

This process could be called "splitting of 

zeros” (see Chapter 1, Definition 1.12.1).  

The seventeen signatures (2.8.10) form a 

structure as indicated in the above introduction 

to the Algebra of signatures. A further structure 

which is developed in the cited references can be 

created by adding the Kronecker product and 

using the formation of the sixteen non-zero sig-

natures of the ranked (2.8.11) in the anti-

symmetric matrix resulting from the square us-

ing the Kronecker product of a 2 × 2 matrix of 

binary signatures [22]:  

 

         

































 

)()()()(

)()()()(

)()()()(

)()()()(

)()(

)()(
2

         (2.8.12)    

                    

We shall not follow up on this possibility in this paper; the reader is referred to the papers al-

luded to above.   

According to the classification of Felix Klein, quadratic forms (2.8.4) and (2.8.5) are divided 

into three topological classes [29] (see Chapter 1):  

1st class: quadratic forms (metrics), the signatures of which are composed of four identical 

characters:  

                                                    x0
2  + x1

2 + x2
2 + x3

2 = 0     (+ + + +)                                  (2.8.13)   

                                                  – x0
2  – x1

2 – x2
2 – x3

2 = 0      (– – – –)                                    (2.8.14)   

 

represent a"null" 4-metric space. In these spaces, there is only one actual point that is at the beginning 

of the light cone. All other terms of these extents are imaginary. In fact, in this case the metric (2.8.13) 

does not describe a positive length but rather a single point (which we will term a "white" point); and 

the metric (2.8.14) describes a single anti-point (which we shall term a "black" point).  

2nd class: metrics, whose signatures are composed of three identical symbols and one of the 

opposite:  
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is an oval surface [29]: a) ellipsoid; b) elliptic paraboloid; c) two-sheeted hyperboloid (elliptic hyper-

boloid).  

3rd class: metrics, the signatures of which are composed of two positive and two negative signs:  

 

 

 

These represent a variety of options for annular surfaces (Klein 2004): (a) single-band hyperbo-

loids; (b) hyperbolic paraboloids. 

A simplified illustration of the signature due to its topology of the 2-dimensional region is 

shown in Figure 2.8.1. 

– x0
2  –x1

2 – x2
2 + x3

2 = 0        (– – – +)   

– x0
2 – x1

2 + x2
2 – x3

2 = 0        (– – + –)  

– x0
2  + x1

2 – x2
2 – x3

2 = 0       (– + – –)  

    x0
2 – x1

2 – x2
2 – x3

2 = 0       (+ – – –)      

   x0
2 + x1

2 + x2
2 – x3

2 = 0        (+ + + –)    

   x0
2 + x1

2 – x2
2 + x3

2 = 0        (+ + – +)     

   x0
2 – x1

2 + x2
2 + x3

2 = 0        (+ – + +)     

– x0
2 + x1

2 + x2
2 + x3

2 = 0        (– + + +) 

(2.8.15) 

 x0
2 – x1

2 – x2
2 + x3

2 = 0          (+ – – +)   

 x0
2 + x1

2 – x2
2 – x3

2 = 0          (+ + – –)     

 x0
2 – x1

2 + x2
2 – x3

2 = 0           (+ – + –)     

– x0
2 + x1

2 + x2
2 – x3

2= 0         (– + + –) 

– x0
2 – x1

2 +  x2
2 + x3

2 = 0        (– – + +) 

– x0
2 + x1

2 – x2
2 + x3

2 = 0         (– + – +)  

(2.8.16) 
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Such an additive overlay (or "atlas") of a 7-metric space with metrics (2.8.4) and (2.8.5) leads 

to the Ricci-flat spaces with the total metrics (2.8.1) and (2.8.2). Such a 7-sheeted atlas is very similar 

to the Ricci-flat 10-dimensional Calabi-Yau space. 

Stability can only be:  

 a convex vacuum formation, described by a metric with signature (+   ),  

 a concave vacuum formation described by a metric with signature ( + + +),  

 a “flat" vacuum formation, described by a metric with signature (0 0 0 0).  

All the other 14 metrics (2.8.4) and (2.8.5) with the signatures of the numerators are ranked by   

(2.8.6) 

 

 

 

 

 

 

describe various types of "convex-concave" states. The corresponding regions of the vacuum may not 

be stable, since metric data cannot be solutions of vacuum equations. They can occur as temporary 

complex distortions of a local vacuum area, but after some time they disappear or turn into other types 

of fluctuations with other signatures (or topologies). 

However, if the additive superposition (combination) of several metric spaces with signatures 

(topologies) (2.8.17) in the amount results in an average "convex" vacuum formations with the signa-

ture (+ – – –), or on average "concave" formation of the vacuum with the signature (– + + +), or to the 

average "flat" vacuum education with signature (0 0 0 0), such a vacuum formation may be stable. 

 

 

 

 (+   +   +   +) 
 (–   –   –   + ) 
 (+   –   –   + ) 
 (–    –  +   – ) 
 (+   +   –   – ) 
 (–   +   –   – ) 
 (+   –   +   – ) 

 

(–  –   –   – )  
(+  +   +  – ) 
(–  +   +  – )                                              
(+  +   –   +)                                                            
(–   –   +  +) 
(+  –    +  +) 
(–   +   –  +)                                        (2.8.17)       

        

a) sign (+ +);          b) sign (– +);       c) sign (+ 0) 

    z = x1
2 + x2

2        z = x2
2 – x1

2
               z = x1

2 
 

Fig. 2.8.1 Signature of the metric connection with the topology 
of 2-dimensional length [29] 
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2.9 The «proton»  «antiproton» 

Solutions of Einstein field equations (2.1.6), (2.2.7) and (2.4.8) lead not only to aggregate met-

rics (2.8.4) and (2.8.5), but, for example, also to additive combinations of metrics: 

 

There are three possibilities for the average convex of vacuum formation, which can be repre-

sented in an equivalent form:  

                

 

 

 

and three possibilities for the average concave of vacuum formation:  

   (+  +  +  –) 
   (–  +  –  +) 
   (–  –  +  +)     
   (–  +  +  +) + 

(2.9.6) 

( +  +  –  +) 
( –  –  +  +) 
( –  +  +  –) 
( –  +  +  +) + 

(2.9.7) 

( +  –  +  +) 
( –  +  +  –) 
( –  +  –  +) 
( –  +  +  +) + 

(2.9.8) 

 

Recall that the metrics (2.8.1) and (2.8.2) are special (limiting) cases of all other metrics (2.2.8) 

through (2.2.11) and (2.2.13) through (2.2.16) are solutions of the second vacuum equations (2.2.7). 

Therefore, the mathematical techniques, outlined by the author of the Algebra of Signatures as ex-

plained above, apply to all these solutions.  

We will enter ideas of «quarks». To do this, we write the ranks (2.9.3) through (2.9.8) as fol-

lows:  

dr
+(+  +  +  –) 

ug
– (–  +  –  +) 

ub
– (–  –  +  +) 

р1
+(–  +  +  +) + 

(2.9.9) 
 

dg
+ (+ +  –  +) 

ub
– (–  –  +  +) 

ur
–(–  +  +  –) 

p2
+(–  +  +  +) + 

(2.9.10) 
 

db
+(+ –  +  +) 

ur
–(–  +  +  –)  

ug
–(–  +  –  +) 

p3
+(–  +  +  +) + 

(2.9.11) 
 

 
where pi

+ are three different states of an «proton» (i = 1, 2, 3).   
 

 

 

 

where pi
 are three different states of an «antiproton».  

s(– – – +)2 =   – x0
2 – x1

2 – x2
2 + x3

2 =0  

s(+ – + – )2 =    x0
2 – x1

2 + x2
2 – x3

2 =0    (2.9.1) 

s(+ + – –)2 =     x0
2 + x1

2 – x2
2 – x3

2 =0   

s(+ – – –)2 =     x0
2 – x1

2 – x2
2 – x3

2 =0 

 s(+ + + – )2 =    x0
2 + x1

2 + x2
2 – x3

2  =0 

 s(– + – +)2  =  – x0
2 + x1

2 – x2
2 + x3

2 =0     (2.9.2) 

 s (– – + + 2 = – x0
2 – x1

2 + x2
2 + x3

2  =0    

 s(– + + +)2   =  – x0
2 + x1

2 + x2
2 + x3

2 =0 

 (–  –  –  +)      
 (+  –  +  –) 
 (+  +  –  –) 
 (+  –  –  –) + 

  (2.9.3) 

   ( –  –  +  –) 
   ( +  +  –  –) 
   ( +  –  –  +) 
   ( +  –  –  –) +  

(2.9.4) 

( –  +  –  –) 
( +  –  –  +)    
( +  –  +  –) 
( +  –  –  –) + 

  (2.9.5) 

  dr
– (–  –  –  +)     

  ug
+ (+  –  +  –) 

  ub
+ (+  +  –  –) 

  р1
– (+ –  –  –) + 

 
(2.9.12) 

   dg
– ( –  –  +  –) 

   ub
+ ( +  +  –  –) 

   ur
+ ( +  –  –  +)     

   р2
– ( +  –  –  –)+ 

  (2.9.13) 

  db
– ( –  +  –  –) 

  ur
+ ( +  –  –  +)   

  ug
+ ( +  –  +  –)    

  р3
– ( +  –  –  –)+ 

   
(2.9.14) 
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The sets of ten kinds of metrics (2.6.22) with the appropriate signatures from the matrix 

(2.8.12) will be termed as follows:  

 

       10 metrics 1 of the form (2.6.22) with signature (+ + + –)  :  red      dr
+-«quark»;  

       10 metrics of the form (2.6.22) with signature (+ + – +)    :  green   dg
+-«quark»;            (2.9.15)   

       10 metrics of the form (2.6.22) with signature (+ – + +)    :  blue     db
+-«quark»,  

 

       10 metrics of the form (2.6.22) with signature (– – – +)    :  red     dr
–-«antiquark»;  

       10 metrics of the form (2.6.22) with signature (– – + –)   :  green   dg
–-«antiquark»;        (2.9.16)  

       10 metrics of the form (2.6.22) with signature (– + – –)    :  blue    db
–-«antiquark»,  

 

       10 metrics of the form (2.6.22) with signature (+ – – +)    : red       ur
+-«quark»;  

       10 metrics of the form (2.6.22) with signature (+ – + –)    :  green   ug
+-«quark»;             (2.9.17)  

       10 metrics of the form (2.6.22) with signature (+ + – –)    : blue      ub
+-«quark». 

 

       10 metrics of the form (2.6.22) with signature (– + + –)   : red       ur
–-«antiquark»;  

       10 metrics of the form (2.6.22) with signature  (– + – +)   : green   ug
–-«ntiquark»;         (2.9.18)  

       10 metrics of the form (2.6.22) with signature (– – + +)    : blue     ub
–-«antiquark». 

 

In this case, the three «proton» states of and three «antiproton» states may be represented as  

 

                                   p1
+  = ug

–ub
–dr

+,      p2 
+ = ur

– ub
– dg

+,      p3
+ =  ug

– ur
– db

+
 ,                     (2.9.19)         

                                   p1
–  = ug

–ub
–dr

+,      p2 
– = ur

– ub
– dg

+,      p3
– =  ug

– ur
– db

+
 ,                      (2.9.20)         

   

similar to the notation and composition of the proton and antiproton in the Standard Model and in 

quantum chromodynamics. However, within the framework of the Algebra of Signatures, the «proton» 

and «antiproton» consist of «quarks» and «antiquarks», which allows us to outline ways to solve the 

problem of the coexistence of matter and antimatter. In addition, metric-dynamic models given by the 

Algebra of Signatures are obtained in a more straightforward and informative way. In addition, the 

metric-dynamic models of the Algebra of Signatures are much more visual and informative than the 

models of quantum chromodynamics. For example, consider a multilayered metric-dynamic model of 

the «proton» in the state (2.9.9):  

 

                                                 

1 10 metrics are of the form (2.6.22), because the scope (2.6.31), as well as the core, are related to the outer shell. In this way, 5 met-
rics describe the core, and 5 metrics describe the outer shell, to make up the total of 10 metrics.     
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                                                      «Proton»                                 (2.9.21)  
On the average, this is a concave multilayer vacuum formation 

with a total (average) signature (2.9.9) 

( + + +), 
consisting of: 

   

                                                                   [a] dr
+-«quark»                                           (2.9.22) 

with signature  
(+ + + –) 

 
                                                [a][i] Тhe outer shell of the dr

+-«quark»                              
in the interval [r5, r6]  

(Figure 2.9.1): 
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                                             [a][ii] The сore of the dr
+-«quark»                                  (2.9.23) 

in the interval [r6, r7]  
(Figure 2.9.1) 
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                                                       [a][iii] The scope of the dr
+-«quark»                          (2.9.24) 

in the interval [0, ]  
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( +  +) 
which consists of: 

 

                                              [b][i] The outer shell of the ug
-«antiquark»                       (2.9.25) 

in the interval [r5, r6] (Figure 2.9.1) 
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                                                [b][ii] The core of the ug
-«antiquark»                                    (2.9.26) 

in the interval [r6, r7] (Figure 2.9.1) 
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                                                [b][iii] The scope of the ug
-«antiquark»                   (2.9.27)  

in the interval [0, ] 
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                                                                 [c] ub
-«antiquark»                                             (2.9.28) 

 with signature  
   (– – + +) 

[c][i] The outer shell of the ub
-«antiquark» 

in the interval [r5, r6] (Figure 2.9.1): 
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                                                         [c][ii] Тhe core of the ub
-«antiquark»                   (2.9.29)  

                                                                                    in the interval [r6, r7] (Figure 2.9.1) 
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                                                [c][iii] The scope of the ub
-«antiquark»                                (2.9.30)  

                                                                                     in the interval [0, ]:  
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5 sin  drdrdrdtcds  .   

  

 

When averaging in homogeneous terms of the metrics (2.9.22) through (2.9.30), we obtain a set 

of metrics (2.6.32), describing the metric-dynamic state which we have named a «positron». However, 

it should be expected that the range of the «proton» core, consisting of three «quarks», is greater than 

the radius of the «positron» core, as the three «quarks» of the core repel one another away from their 

common center, where we set r = 0 (Figure 2.9.1).  

The problem of confinement of one «quark» and two «antiquarks» is immediately solved, be-

cause each «quark» or «antiquark» is an unstable "convex-concave" state of the vacuum region. Only 

together, do they form a conditionally concave vacuum state with a stable average, thus forming an 

«proton» (Figure 2.9.1). 

The average set of metrics (2.9.22) through (2.9.30) is a part of the solution of the simplified 

thirdEinstein field equation (2.6.21), as well as a set of metrics (2.6.32).  

 The «quarks» ug
–, ub

–, dr
+ are in chaotic motion with respect to the common center at r = 0 and 

relative to one other (Figure 2.9.1). On the average, they will thus make up an «proton»: <rg> = r = 0,  

Fig. 2.9.1 A «proton» core essentially consists of the combination of a core with a valence  dr
+-«quark» and two va-

lence ug
– and ub

–-«antiquarks». Three internal particelles of valence  «quarks» are in constant random motion and 

intertwining with each other 

Abyss of «proton» 

Core of «proton» 

 Outer shell of          

«proton» 

Particelle,  with 

«quark» and 2 

«antiquark» of 
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<rb> = r = 0,  <rr> = r = 0. Therefore, we have to use not only the metric-dynamic but also the statisti-

cal description of intranuclear processes; a fuller discussion of this may be found in chapters 3 and 4.  

The mathematical methods which have been briefly touched upon in § 2.1 to§ 2.3 of this 

Chapter, and developed more fully in [22]. These allow one to retrieve information on a variety of pro-

cesses and sub-processes that occur within the core, and in its outer shell of the «proton», from the set 

of metrics (2.9.22) through (2.9.30). 

 

2.10 The «neutron» 

In modern nuclear physics, the neutron consists of two d-quarks with a charge of (1/3)e and a 

u-quark with a charge (2/3)e (where е – an electron charge) 

                                                                n = ddu.             (2.10.1) 

As a result of this combination, a neutron is an electrically neutral particle with zero net charge 

(1/3) e + (1/3) e + (2/3) e = 0.  

In the Algebra of Signatures 3-«quark» particles with zero electric charge does not work! Since 

there is no additive combination of three of the 16 signatures (2.8.12) leading to a zero signature              

(0 0 0 0), which means in fact that all sub-contact - antisub-circuit intra-vacuum currents in the outer 

shell of such a "particle" are completely mutually compensated. 

In the framework of the Algebra of Signatures, no metric-dynamic model of a 3-«quark» parti-

cle with zero "electric" charge is available!  This is due to the fact that there is no additive combina-

tion of three of the 16 signatures (2.8.12) leading to a zero signature (0 0 0 0), which means in fact that 

all subcont-antisubcont intra-vacuum currents in the outer shell of such a «particle» sum to zero in 

combinations of an even number of signatures. 

However, the desired result is achieved in the case of the rankings which we have outlined, 

consisting of four signatures. Therefore, the "electrically" neutral «particle» («neutron») may have the 

following topology (node) configurations:       
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where  

    10 metrics are of the form (2.6.22) with signature (+ + + +) a white iw
+-«quark»;              (2.10.2) 

    10 metrics are of the form (2.6.22) with signature (   )a white iw
-anti-2-quark.        (2.10.3) 

White «quarks» are so named because they are almost invisible within the core of the «neu-

tron», since from the point of view of topology, they are a point of (2.8.13) and an anti-point of 

(2.8.14). Apparently, therefore, their presence in the core of the «neutron» was not detected experi-

mentally, and was not taken into account by the Standard Model. 

Thus, under the methods of the Algebra of Signatures, eight possible states of the «neutron» 

can be represented as:  
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similar to the neutron in the Standard Model (2.10.1).  

Due to the complicated "intra-core" topological metamorphosis, any additive 4-«quark» combi-

nation (2.10.2) can be reconstructed so that the inside of the vacuum formation will consist of an «pro-

ton» and an «electron»:                         

                                                                                                                                        

 

   

    

                                                                                                                                       (2.10.5) 

Apparently, this rebuilding ("unleashing") of a topological node inside the core, the «neutron»,  

leads to the decomposition reaction  

                                                                      n   p+ + e– + e ,                                               (2.10.6)  

where e  is an «neutrino» (metric-dynamic models of various «neutrino» are considered in Chapter 7).  
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2.11 The hydrogen «atom» 

Compared with the «neutron» a substantially more stable neutral vacuum formation is the           

«atom» of hydrogen.  

According to astronomical observations, visible matter in the Universe consists of approximate-

ly three quarters hydrogen and approximately a quarter helium, with the other chemical elements ac-

counting for only around two percent.   

A neutral atom of deuterium is composed of one «proton», one «neutron» and one «electron. 

As part of the Algebra" of signatures, it turns out that the «atom» of deuterium is composed of an «pro-

ton», an neutron and an «electron». The rank (topological) equivalent nodal configuration of such a 

region of the vacuum is as follows: 
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(2.11.1)   

   

Many combinations of signatures similar to (2.11.1) can be made, which reflects the possibili-

ties of "color" combinatorics of intra-core metamorphoses. But the topological configuration of this 

"node" always remains the same: three u-«quarks», three d-«quarks», one i-«quark»  and one e-

«quark». We agree to denote such a topological "node" as follows: 

 

                                                               1Н = 3u3die ,                                                                             (2.11.2)  
                                                 

  Taking into account the topological properties of the metric with the appropriate signatures 

(2.8.13) through (2.8.16), we find that the "node" consists of three twisted "torahs", four oval surfaces 

and a "point".  

Similarly, all the known chemical elements of the Mendeleev’s periodic table could be con-

structed, or following up on our previous image, braided, whereby the average size of their nuclei rn 

would depend on the number of «quarks» A forming the "topology nodes": 

 

                                           rn ≈ ½А1/3r6 ≈ ½ А1/3·10-13cm .  
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It is tempting to postulate that these discrete radii in stable vacuum states form a Fibonacci or 

other Lucas sequence. To follow up on this idea, a task which we shall not attempt here, an appropriate 

starting point would be to apply equation (2.7.8) with rk = r6. 

 

2.12 «Fermions» in the Algebra of Signatures 

Having a set out of 16 colored «quarks» (2.9.15) through (2.9.18) and (2.10.3) (as summarized 

in Table 2.12.1) and understanding their topological features, all fermions (mesons and baryons) from 

the Standard Model can be braided.  
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where, for example,  
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                                                            uk
-«antiquark»                                                  (2.12.1) 

    with signature is ( + + ) 
                                                                                           composed of:  
 

                                                   The outer shell of the uk
-«antiquark»                                (2.12.2) 

  in the interval [r5, r6] (Figure 2.9.1)                  
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                                                        The core of the uk
-«antiquark»                                      (2.12.3) 

in the interval [r6, r7] (Figure 2.9.1) 
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                                                     The scope of the uk
-«antiquark»                                       (2.12.4)            

 in the interval [0, ] 
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 133

In quantum chromodynamics, mesons are composed of a quark and an antiquark, and are given by  

                                      ззккгг qqqqqqqqqqM
3

1
 ,                       (2.12.5)        

where q+ ( = b, g, r) is a quark (or antiquark) color tripletand q– is an antiquark color triplet.  

Baryons composed of 3 quarks, and are given by  

                                                                 qqqB
6

1
 ,                               (2.12.6)  

where  are completely antisymmetric tensor.  

«Mesons» and «baryons» are formed in the same way in the Algebra of Signatures. Consider a 

specific example: three types of pi-mesons subject to strong interactions have the quark structure: 

                             .,
2

1
, 0   dudduudu                     (2.12.7)  

In the Algebra of signatures, such as the meson + = u– d +  is represented as  

 

 

                                                  (2.12.8) 

 

for which each signature corresponds to the set of ten metrics of the type (2.12.1).  

Even from within these ranks it is seen that such a convex-concave vacuum formation cannot 

be stable. They can arise from this topological configuration, but in this way, they instantly disappear, 

blur together or collapse to nodes resulting from the intertwining of the inside vacuum currents in the 

curved region of the vacuum.    

In turn, the «quark» structure  

                                                             dduu
2

10                                        (2.12.9)   

can have the following signature (topological) analogues:  

 

        u r
+ (+ – – +) 

     ug
– (– + – +)+  

– 
     d r

+ (+ + + –) 
     dg

–  (– – + –)+ 
       1

0  (0 0 0 0) 

        ug
+ (+ – + –) 

     ub
–  (– – + +)+  

– 
     dg

+ (+ + – +) 
     db

–  (– + – –)+ 
       2

0  (0 0 0 0) 

   ub
+ (+ + –  –) 

   u r
–  (– + + –)+  

– 
   db

+ (+ – + +) 
   d r

–  (– – – +)+ 
   3

0  (0 0 0 0) 
                   (2.12.10) 

 

Similarly, under the Algebra of Signature all known mesons and baryons from the Standard 

Model can be braided.   

    dr
+ (+ +  + –) 

    ug
–  (–  +  – +) 

       1
+ (0 2+ 0 0) + 

 dg
+ (+  + –  +) 

 ub
– (–  –  +  +) 

2
+  (0  0 0 2+)+ 

db
+( + –  +  +) 

ur
– ( – +  +  –) 

3
+

 (0  0 2+ 0) + 
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The Algebra of Signatures differs from the Standard Model only in the presence of its other    

"invisible":  ib
+-«quark»  and  ib

-«antiquark».  

 

2.13 «Bosons» in the Algebra of Signatures 

The local part of the flat outer side of the vacuum region is described by the metric (2.8.1)  

 
                   ds(–)2 = с2dt2 – dx2 – dy2 – dz2  = ηij

(–)dxi
 dxj 

 with the signature (+ – – –),                 (2.13.1)  
where  
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)(
ij ,                                               (2.13.2) 

and the same lengths of the inside of the vacuum region is described by the metric (2.8.2)  

                             ds(+)2 = –с2dt2 + dx2 + dy2 + dz2  = ηij
(+)dxi

 dxj 
 with signature (– + + +)                           

where                                                                                                                                                  
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)(
ij .                                    (2.13.3)                   

As part of the Algebra of Signatures, weak perturbations of a two-way vacuum over a given           

2-braid (averaged metric) take the form 

                ½(ds(–)2 + ds (+)2) =  ½(ηij
(–) + hij

(–) + ηij
(+) – hij

(+)) dxi
 dxj 

 = ½(hij
(–) – hij

(+)) dxi
 dxj

 ,        (2.13.4)  

where hij
() and hij

(+) are related components of the tensors defining slight bilateral deviations from the 

state of the original uncurved vacuum region.  

We assume a fixed reference system in a fashion similar to the fixing of the electromagnetic 

vector potential in the Lorentz gauge condition in electrodynamics [34]. We further impose additional 

conditions on hij
(–) and hij

(+), so that the first vacuum Einstein equation (2.1.6) is reduced to the wave 

equation  

                                                      .0)(
2

11 )()(
2

2

2












 
ijijij hh

tс
R                                   (2.13.5)     

  

In a small area of the vacuum, the wave disturbance can be regarded as a plane wave. If the di-

rection of wave propagation is represented along the x-axis, a suitable choice of the reference system 

will make the components  hij
() and  hij

(+) vanish,  as well as the components 
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                         h22
(–) =  – h33

(–)   h+
(–)       and       h32

 (–) = h23
(–)   h(–).                                     (2.13.6)       

                         h22
(+) =  – h33

(+)   h+
(+)     and     h32

 (+) = h23
(+)   h(+).                        

 

Such a wave disturbance is a quadrupolar transverse wave. The polarization of this wave in the 

u-z plane is defined by the following tensor of the second rank: 

                             ,0
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    a, b = 2, 3.         (2.13.7) 

The separate components,  h+
(–) and  h(–),  h+

(+)  and  h(+)
,
  describe two independent polariza-

tion planes of the quadrupolar wave disturbances which differ from each other by a rotation through an 

angle of π/4.  

The average second-rank tensor  
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                            (2.13.8)     

can describe, under certain phase relationships, not only the quadrupolar but also the dipolar, including  

linear, elliptical and circular polarization wave disturbances of a two-sided extension.  

Thus, the first Einstein field equation (2.1.6) is linearized for small perturbations of the metric, 

i.e., it becomes the wave (2.13.5), and allows the distribution of different types of wave disturbances 

on the two-sided vacuum region.  

The problem of propagation of wave disturbances throughout the vacuum can be considered in 

a different way. We start with the metric (2.13.1)  

 

                     ds(–)2 = с2dt2 – dx2 – dy2 – dz2 = 0   with the signature (+ – – –).             (2.13.9) 

     

This determines not only the metric-dynamic properties of the flat outer side of the vacuum region, but 

also the spread of the light beam in a vacuum at a forward speed of  сdt = (dx2 + dy2 + dz2)1/2.  

In this metric (2.13.3)  

 

                     ds(+)2 = – с2dt2 + dx2 + dy2 + dz2 = 0  with signature (– + + +).                 (2.13.10)    

 

determines not only the metric-dynamic properties of the flat inner side of the vacuum region, but also 

the spread of the light beam in a vacuum at a speed from the opposite direction 

                                                      сdt = (dx2 + dy2 + dz2)1/2.  

Recall that the quadratic form (2.13.9) and (2.13.10) can be represented as a product of linear 

(affine) forms (2.1.37) and (2.1.38)  
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             ds(–)2 =  с2dt2 – dx2 – dy2 – dz2 =  сdtсdt– dxdx– dydy– dzdz,              (2.13.11)     

             ds(+)2 = – с2dt2 + dx2 + dy2 + dz2 = – сdtсdt+dxdx+dydy+dzdz,            (2.13.12)    

where, according to (2.1.39) through (2.1.42):  

           ds(–) =      сdt– dx– dy– dz        "Cover" of the outer side of the vacuum;              (2.13.13) 

           ds(–) =    сdt– dx– dy– dz    "Inside" of the outer side of the vacuum;           (2.13.14) 

           ds(+) = – сdt+ dx+ dy+ dz        "Cover" of the inner side of the vacuum;                (2.13.15) 

           ds(+) = – сdt+ dx+ dy+ dz   "Inside"  of the inner side of the vacuum.               (2.13.16) 

Since the segments from (2.13.13) through (2.13.16) are perpendicular to each other: 

                                                             ds(–) ds(–) ds(+)  ds(+),  

the language of quaternions is the most effective form to handle them.  

In that case, instead of the linear form (2.13.13), we use quaternion  

                                           z =  – x0 + ix1 + jx2 + kx3 ,       stignature { + + +}                           (2.13.17)       

and instead of (2.13.15) , the complex conjugate quaternion    

                                           z* =  x0 –xi3  – jx2 – kx1 ,      stignature {+ – – –}                            (2.13.18)                 

In general, the Algebra of Signatures admits the existence of 16 types of "color" quaternions 

with all possible stignatures:  

 

                          (2.13.19) 

By a straightforward calculation, it is easy to see that the sum of all 16 types of "color" quater-

nions (2.13.19) is equal to zero  

                   z1 + z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10 + z11 + z12 + z13 + z14 + z15 + z16 = 0,      (2.13.20)      

so that we can consider that the vacuum itself satisfies the “vacuum condition”.  

Equivalent stignatures from (2.13.20) take on the form:   

                                         {+ + + +} + {– – – +} + {+ – – +} +  {+ + – –}+  

                                      + {+ – + –} + {– + – –} + {+ – + –} + {– + + +} +                            (2.13.21) 

                                      + {– – – –} + {+ + + –} + {– + + –} + {+ + – +} + 

                                      + {– – + +} + {+ – + +} + {– + – +} + {+ – – –} = {0000}.      

z1  = x0  + ix1 + jx2 +kx3        {+ + + +} 

z2 = –x0 – ix1  – jx2 + kx3      {– – – +} 

z3 = x0 –ix1 – jx2 + kx3            {+ – – +} 

z4 = –x0  – ix1+ jx2– kx3         {– – + –} 

z5 = x0 +ix1 – jx2 – kx3            {+ + – –} 

z6 = –x0  + ix1 – jx2 – kx3      {– + – –} 

z7 = x0 – ix1 + jx2 – kx3           {+ – + –} 

z8 = –x0 + ix1 + jx2 +kx3        {– + + +}  

{– – – –}    z9 = –x0  –ix1 – jx2 –kx3  

{+ + + –}    z10 = x0 + ix1 + jx2 – kx3             

{– + + –}     z11= –x0 +ix1 + jx2 – kx3  

{+ + – +}     z12= x0 + ix1 – jx2 + kx3  

{– – + +}     z13= –x0  – ix1 + jx2 + kx3  

{+ – + +}     z14= x0 –ix1 + jx2 + kx3 

{– + – +}     z15 = –x0  + ix1– jx2+ kx3            

{+ – – –}      z16 = x0 – ix1 – jx2– kx3   
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stignatures form a structure similar to the signature structure and antisymmetric matrix referred to ear-

lier in this paper 

                              

       
       
       
       





 sstignature*                       (2.13.22) 

            A more detailed analysis of the 16 aggregate stignatures and the "colored" quaternions is given 

in Chapter 1.  

 

13.1 The «photon» and «antiphoton» 

Because, for example, the linear forms (2.13.13) and (2.13.14) are mutually perpendicular in 

relation to each other; the harmonic perturbation propagating along the total metric length (i.e., on the 

outer side of the vacuum) can be represented as: 

    cos{(2/)(сt–x–y–z)} + i sin{(2/)(сt–x–y–z)} = ехр {i (2/)(сt–x–y–z)}= ехр {i( t – k r)}.  (2.13.23)  

We call such a harmonic disturbance of the metric an «photon» having a metric with stignature 

{+   }.  

Similarly, for mutually perpendicular linear forms (2.13.15) and (2.13.16) we have a harmonic 

perturbation of the inner side of the vacuum extension: 

 

     cos{(2 /)(–сt+x+y+z)} + i sin{(2/)(–сt+x+y+z)} = ехр {i (2/)(–сt+x+y+z)}= ехр –{i( t – k r)}. 

                                                                                                                                           (2.13.24)  

which we call «antiphoton» with stignature { + + +} because it extends in the opposite direction with 

respect to the «photon». (This is not to be confused with the antimatter particle of the photon, which is 

of course the photon itself).  

13.2 The W±-«bosons» 

Similar constructions show that six signature ranks:                

                                                                                                                                      (2.13.25) 
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{+  –  +  +} 
{–  +  +  –} 
{–  +  –  +} 

 {–  +  +  +}+
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correspond to three colored states of the W-«boson»  

 

 

 

  

 

 

 

 

 

 

and three colored states of the W-«boson» 

   ехр {i 2 / (  сt + x + y – z)}     
 ехр {j2 / (– сt + x – y + z)}  
 ехр {k 2 / (– сt – x + y  + z)}      
 

{+  +  +  –} 
{–  +  –  +} 
{–  –  +  +} 
{–  +  +  +}+ 

 
         ехр {i 2 / (   сt + x – y + z)}     
       ехр {j 2 / (– сt – x + y + z)}  
       ехр {k 2 / (– сt + x + y –  z)}     
 

{+  +  –  +} 
{–  –  +  +}               (2.13.27) 
{–  +  +  –} 
{–  +  +  +}+ 

  
 

     
 
 

where i, j, k are the imaginary units forming an anticommutative algebra:  

                        i 2= j 2= k 2 = ijk = –1   and     ij + ji = 0.                                     (2.13.28)     

 

2.13.3 The Z0-«bosons» 

The six signature ranks                                                                             
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{0   0  0  0}+ 

 

{+  +  +   +} 
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{0   0  0  0}+ 

                                                                                                                                           (2.13.29) 

   ехр {i 2 / (– сt – x – y + z)}     
 ехр {j 2 / (   сt – x + y – z)}  
 ехр {k 2 / (  сt + x – y  – z)}      
 

{–  –  –  +} 
{+  –  +  –} 
{+  +  –  –} 
{+  –  –  –}+ 

   ехр {i 2 / (– сt – x + y – z)}     
 ехр {j 2 / (   сt + x – y – z)}  
 ехр {k 2 / (  сt – x – y  + z)}     
 

{–  –  +  –} 
{+  +  –  –}                   (2.13.26)          
{+  –  –  +} 
{+  –  –  –}+ 

 
   ехр {i 2 / (– сt + x – y – z)}     
 ехр {j 2 / (   сt – x – y + z)}  
 ехр {k 2 / (  сt – x  + y   – z)}   

{–  +  –  –} 
{+  –  –  +}                                           
{+  –  +  –} 
{+  –  –  –}+ 

       ехр {i 2 / (   сt – x + y + z)}     
     ехр {j 2 / (– сt + x + y – z)}  
     ехр {k 2 / (– сt + x – y + z)}     

 {+  –  +  +} 
 {–  +  +  –} 
 {–  +  –  +} 
 {–  +  +  +}+ , 
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correspond to the six color states of the Z0-«boson»  

 

   ехр {  2 / (– сt – x – y – z)}    
 ехр {i 2 / (   сt – x + y + z)}  
 ехр {j 2 / (– сt + x + y  – z)} 
 ехр {k 2 / (   сt + x – y + z)}   

{–  –  –  –} 
{+  –  +  +} 
{–  +  +  –} 
{+  +  –  +} 
{0  0  0  0}+ 

 
 

   ехр {  2 / (– сt – x – y – z)}    
 ехр {i 2 / (   сt + x – y + z)}  
 ехр {j 2 / (   сt + x + y  – z)} 
 ехр {k 2 / (– сt – x + y + z)}   

{–  –  –  –} 
{+  +  –  +} 
{+  +  +  –} 
{–  –  +  +} 
{0  0  0   0}+ 

 
   ехр {  2 / (– сt – x – y – z)}    
 ехр {i 2 / (   сt – x + y + z)}  
 ехр {j 2 / (– сt + x – y  + z)} 
 ехр {k 2 / (   сt + x + y – z)}     
 

{–  –  –  –} 
{+  –  +  +} 
{–  +  –  +} 
{+  +  +  –} 
{0   0  0  0}+ 

 
   ехр {  2 / (   сt + x + y + z)}    
 ехр {i 2 / (– сt + x – y – z)}  
 ехр {j 2 / (   сt – x – y  + z)} 
 ехр {k 2 / (– сt – x + y – z)}   

{+  +   +  +} 
{–  +  –   –} 
{+  –  –   +} 
{–  –  +   –} 
{0  0  0   0}+ 

 
   ехр {  2 / (   сt + x + y + z)}    
 ехр {i 2 / (– сt – x + y – z)}  
 ехр {j 2 / (– сt – x – y  + z)} 
 ехр {k 2 / (   сt + x – y – z)}    
 

{+  +  +  +} 
{–   –  +  –} 
{–   –  –  +} 
{+  +  –   –} 
{0  0   0  0}+ 

 
 
 
 
 
                                                 
          
                                                                                                                                                (2.13.30) 
 

 

 

 

 

 

 

   ехр {  2 / (   сt + x + y + z)}     
 ехр {i 2 / (– сt + x – y – z)}  

   ехр {j 2 / (   сt – x + y  – z)} 
    ехр {k 2 / (– сt – x – y + z)}     

 

{+  +  +  +} 
{–  +  –   –} 
{+  –  +   –} 
{–  –  –   +} 
{0  0  0   0}+   
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2.13.4 The «graviton» 

In the Algebra of Signatures, another «boson» appears, namely, the «graviton».   

 

   ехр {ζ1 2 / (  сt + x + y + z)}     
 ехр {ζ3 2 / (  сt – x – y  + z)}      
 ехр {ζ4 2 / (–сt  – x + y – z)}      
 ехр {ζ5 2 / (  сt  + x – y – z)}    
 ехр{ζ6 2 / (– сt + x – y – z)}     
 ехр {ζ7 2 / (  сt – x + y – z)}                   
 ехр {ζ8 2 / (– сt+ x + y +z)}   
 ехр {ζ1 2 / (– сt –x – y – z)}     
 ехр{ζ2 2 / (   сt + x + y – z)}     
 ехр{ζ32 / (– сt + x + y – z)} 
 ехр{ζ4 2 / (   сt + x – y + z)}         
 ехр (ζ5 2 / (– сt – x + y + z)}  
 ехр{ζ6 2 / (   сt – x + y + z)}        
 ехр {ζ7 2 / (– сt + x– y + z)}                   
 ехр {ζ8 2 / (  сt – x – y – z)}  

{+   +   +   +} 
{–   –   –   +} 
{+   –   –   +} 
{–   –   +   –} 
{+   +   –   –} 
{–   +   –   –}          
{+   –   +   –}   
{–   +   +  + }            
{–   –   –   – }            
{+   +   +  – } 
{–    +   +  –} 
{+   +    –  +}  
{–   –   +   +}  
{+   –   +   +}  
{–   +   –   +} 
{+   –   –   –}    
{0   0   0   0}+          

                                                                                                                                       (2.13.31)    

 

whereby the ζm entities satisfy the anticommutative relations of a Clifford algebra.  

 

                             ζm ζk + ζk ζm = 0  for  m  k , ζm ζm = 1,      or      ζm ζk  + ζk ζm = 2δkm,                  (2.13.32)  

 

 where δkm is the Kronecker delta (δkm = 0 for m  k and δkm = 1 for m = k). One way to define objects 

and  ζm  entities and the Kronecker delta δkm is presented below:  
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         (2.13.33) 

 

2.14 Conclusion on Chapter 2 

In this paper, supported by a 16-sheeted atlas of metric spaces with sixteen types of signatures 

(topologies) (2.8.12) and a 32-page set of affine subspaces with stignatures (2.13.21), we obtain the 

metric-dynamic models of virtually all elements 

of the Standard Model.  

Not considered in this article were the 

analogues of neutrinos, muons, tau-leptons and 

Higgs bosons. Metric-dynamic models of these 

vacuum formations (except for the Higgs bos-

on), and the interaction between between them 

are shown in Chapters 3 through 8. 

In the proposed here massless stochastic 

metaphysics there is no concept of "mass", so 

there is no need to introduce ideas about the 
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    Fig 2.14.1 Components of the Standard Model 



 142

field, which provides a mechanism for spontaneous violation of electroweak symmetry, and, accord-

ingly, about the quantum of this field – Higgs bosons. However, it is possible that in the fully geome-

trized theory there will be metric-dynamic models of vacuum formation with characteristics similar to 

those of these bosons.  

Geometrized description of the main force interactions: electrostatic, electromagnetic, weak 

and nuclear will be presented in the following chapters. 

Mathematical methods that allow to extract various information about local vacuum formations 

from the set of solutions of Einstein's vacuum equations are given at the beginning of this Chapter, and 

in Chapters 5 through 9 and [5, 22].  

An article [32] shows that the Yang -Mills equations in four-dimensional space with conformal 

connection torsion reduce to Einstein's equations, Maxwell's equations, and another group of 10 of 

second-order differential equations. Another article by the same authors [33] provides a general solu-

tion to these equations for a centrally symmetric metric in the absence of an electromagnetic field, and 

also shows that among particular solutions of these equations, expressed in terms of elementary func-

tions, there is a solution which is a Kottler metric. 

In this work Kottler solutions are at the heart of model representations of the metric-dynamic 

vacuum organization as a whole given in (2.5.4) through (2.5.13), including the local spherical vacuum 

formations such as (2.6.22), (2.6.32) and (2.12.1). Therefore, the framework of the Algebra of Signa-

tures provides a complete metric-dynamic «quark» model (Table 2.12.1) and practically all analogues 

of fermions and bosons (section 2.13.1 through 2.13.4) included in the Standard Model are also in-

cluded in this framework, in line with the conclusions of [33]. These may then be proposed as a set of 

analytical solutions of the Yang-Mills theory. 

Note that, if a set of metrics form (2.6.22) (2.6.32) and (2.12.1), then instead of:  

        r5 ~ 4.9·103 cm: ~ «biological cage» inner core; 

        r6 ~1.7·1013 cm: ~ core of an elementary «particle»;    

        r7 ~ 5.8·1024 cm: ~ core of an «protoquark»;  

we could substitute, for example,   

        r2 ~ 1.2·1029 cm: ~ «metagalaxy» inner core; 

        r3 ~ 4·1018 cm: ~ «galaxy» inner core; 

        r4 ~ 1.4·108 cm: ~ «star» or «planet» inner core, 

continuing in an analogous manner, we obtain a geometrophysics and a topological description of the 

extent of the vacuum also on astronomical scales.  

It appears to the author that this results in a universal metric-dynamic model of the closed uni-

verse which is, at the same time, on the average Ricci-flat; this universe is then populated by an infi-

nite number of spherical vacuum formations of various sizes. 
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The usual probabilistic formalism of the Standard Model is still valid, as the core and “parti-

celles” are stable vacuum formations constantly and randomly moving under the influence of the 

neighboring stable vacuum formations and a variety of other vacuum fluctuations. The study of the 

chaotic motion of the vacuum formation cores led to the conclusion of the Schrödinger equation (see 

Chapter 3), and Chapter 4 shows the connection of the Algebra of Signatures with quantum theories. 

The Algebra of Signatures proposed in this article is not an alternative theory opposed to gen-

eral relativity, quantum field theory and superstring theory, but rather their symbiosis via a full geome-

trization of physical laws.  


