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Abstract: In this article: a) a method is developed for calculating volumetric diagrams of elastic 

scattering of microparticles (in particular, electrons and photons) on single-layer and multi-layer 

statistically uneven surfaces; b) the diffraction of elementary particles on crystals is explained 

without involving de Broglie's idea of the wave properties of matter; c) the probability density 

functions of the derivative of various stationary random processes are obtained; d) volumetric 

diagrams of the scattering of particles and photons on homogeneous and isotropic uneven surfaces 

with Gaussian, uniform, Laplace, sinusoidal, and other distributions of unevenness are obtained. 
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1 Background and introduction  

In 1924, Louis de Broglie suggested that a uniformly and rectilinearly moving particle with mass 

m and velocity v can be associated with a plane wave                                     

                                                   = expi(Et – pr)/h,                                               (1.1)                            

where E is the kinetic energy of the particle; p = mv is its momentum; h is Planck's constant. 

The length of such a monochromatic wave is determined by the de Broglie formula 

                                                              λb = h/mv.                                                        (1.2)                            

This idea served as the basis for the development of wave-particle duality and, in particular, 

made it possible to explain a number of experiments on the diffraction of electrons, neutrons, and 

atoms by crystals and thin films [1, 2]. Since then, it has been assumed that the diffraction maxima 

in the Dewisson and Germer experiment appear in directions that meet the Wolfe - Bragg 

condition ebs nd  =sin2 , or taking into account the refraction of “electron waves” in a crystal 

[1]: 

                                                    ( ) ebse nnd  =− 2

1
22 cos2 ,                                            (1.3)  

where d is the interplanar distance of the crystal lattice, θs is the Bragg’s glancing angle (Figure 1), 

n = 1, 2, 3 ... is the order of interference (or reflection), λeb is the de Broglie electron wavelength, 

ne is the refractive index of the de Broglie electron wave. 

                                                 

 

Fig. 1 Wulff - Bragg’s condition for diffraction of microparticles (in particular, electrons or 

photons) on the surface of a crystal.          is the direction of motion of the falling microparticles; 

         is the direction of movement of the reflected microparticles 

 

 

However, over the past 95 years, de Broglie waves have not been detected experimentally. 

They remained an auxiliary mental construction, which allows one to describe the phenomenon 

mathematically, without revealing the essence of the events occurring in this case. 

This article shows that the diffraction of microparticles on a crystal can be described without 

involving de Broglie's idea of the wave properties of matter.  



Based on the laws of reflection in geometric optics and probability theory, at the end of this 

article, the formula (3.9) [or (3.10)] is obtained for calculating the diagram of elastic scattering of 

microparticles (DESM) on a multilayer crystal surface. The results of calculations using this 

formula are consistent with experimentally obtained electron diffraction patterns (EDP) (Figure 

1a). 

 

                               

                                       а)                                                                           b) 

 

Fig. 1a a) The volumetric diagram of elastic scattering of microparticles on a multilayer crystal 

surface, obtained as a result of calculations by the formula (3.9); b) Experimentally obtained 

electron diffraction pattern (photo from https://www.sciencephoto.com/media/3883/view) 

 

 

In addition, this article develops a method for calculating volumetric diagrams of elastic 

scattering of microparticles (DESM) on uneven surfaces with various statistics of the heights of 

the irregularities.  

By “microparticles” in this paper we mean any particles (fermions and bosons) whose sizes 

(or wavelength) are much smaller than the characteristic sizes of the irregularities of the reflecting 

surface (Kirchhoff approximation), and whose reflection occurs according to the laws of 

geometric optics. 

For example, an electron can be called a "microparticle" with an effective size of about           

10–13cm, which is reflected from the surface of a crystal with characteristic sizes of irregularities 

greater than 10–11cm. Also, a football can be considered a "microparticle" with a diameter of  

about  22.3 cm, reflected from an uneven solid surface, the average radius of curvature of which is 

more than 20 m. "Microparticles" also include photons and phonons with a wavelength λ two 

orders of magnitude smaller than the autocorrelation radius of the heights of the reflecting surface 

irregularities (Appendix 1). 

Extensive literature is devoted to the scattering of particles and waves on the uneven (rough) 

boundary of two media, for example, [3 – 27]. However, the formulas for calculating volumetric 

diagrams of scattering of particles or waves on surfaces with different statistics of roughness 

https://www.sciencephoto.com/media/3883/view


(irregularities) heights in the case of the Kirchhoff approximation are practically absent in the 

literature.  

Extensive literature is devoted to the scattering of particles and waves on the uneven (rough) 

boundary of two media, for example, [3 – 27]. However, the formulas for calculating volumetric 

diagrams of scattering of particles or waves on surfaces with different statistics of roughness 

(irregularities) -- in the case of the Kirchhoff approximation -- are practically absent in the 

literature.  

This article presents for the first time volumetric diagram of elastic scattering of 

microparticles on homogeneous and isotropic uneven surfaces with Gaussian, uniform, Laplace, 

sinusoidal, and other distributions of height of irregularities. Data from the scattering diagram 

refer to any of the above microparticles (fermions and bosons). 

 

2 Method 

The purpose of this section of the article is to develop a method for calculating volumetric 

diagrams of elastic scattering of microparticles (DESM) (in particular, electrons, photons or 

phonons) on statistically uneven surfaces under the conditions of the Kirchhoff approximation 

(i.e., when the averaged radius of curvature or the radius of autocorrelation of irregularities 

reflecting surface is much larger than the size or wavelength of the microparticles). 

 

2.1 Reflection of elastic microparticles from an uneven surface 

Consider the incidence of microparticles on the surface of a solid (or liquid) body (Figure 2) at the 

angles ϑ and γ (Figure 3), and their reflection from this surface at the angles ν and ω.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Scattering of microparticles (in particular, electrons or photons, that is, a ray of light) on a 

reflective surface, where: 1 is a microparticle generator; 2 is microparticle detector; 3 is solid or 

liquid body (in particular, a metal crystal or a volume of water) 



Let's imagine the upper layer of a body as a two-dimensional statistically uneven surface 

(x,y), which repeats the structure of its atomic lattice (Figure 3), or the excitement of a liquid.  

It is known that elastic particles (or waves) moving at the speed of v are reflected from the 

smooth surface of a solid (or liquid) body according to the laws of geometric optics (specular 

reflection): 1) the incident particle (or light ray), reflected particle (or light ray) and the 

perpendicular (normal) to the two media border in the point of particle (or light ray) incidence lie 

in one plane; 2) the angle of incidence Q1 is equal to angle of reflection Q2. This phenomenon is 

called “specular reflection” or “elastic scattering” of microparticles. 

Under the condition of elastic scattering, the fact that the two-dimensional probability 

density function (TPDF) ρ(ν,ω) of the microparticle is reflected from the uneven reflecting surface 

at angles ν, ω and corresponds to the fact that the TPDF ρ(,φ) of the unit vector normal to the 

surface n, at the point where the microparticle falls, will be directed at angles , φ (Figures 3,4,5). 

Therefore, from the TPDF ρ(,φ) it is possible to obtain the TPDF ρ(ν,ω/ϑ,γ) using the 

transformation of variables: 

                          ρ(,φ) = ρ{=f1(ν,ω/ϑ,γ);  φ=f2(ν,ω/ϑ,γ)} |Gνω| = ρ(ν,ω/ϑ,γ)|Gνω|,                 (2.1) 

where       

                                                           = f1(ν,ω/ϑ,γ)                                                                (2.2) 

is the functional relationship between the angle  and the angles ν, ω, for given angles ϑ, γ; 

                                                             φ = f2(ν,ω/ϑ,γ)                                                               (2.3)       

is the functional relationship between the angle φ and the angles ν, ω, for given angles ϑ, γ; 

ρ{ν,ω/ϑ,γ}|Gνω|  is the TPDF of the microparticle which is reflected from an uneven surface in the 

direction given by the angles ν, ω, if angles ϑ, γ are known; 

|Gνω| is the Jacobian of the transformation of the variables , φ into the variables ν, ω. 

In this case, the probability that a particle whose initial direction of motion is given by the 

angles ϑ and γ will be reflected from the surface in a direction limited by the angular ranges dν and 

dω is 

                                        P(ν,ω) = ρ(ν,ω/ϑ,γ)|Gνω|dνdω.      

This formula essentially shows what portion of the total number of microparticles (or the 

total wave energy) that fall on the reflective surface is scattered in the direction given by the 

angles ν and ω within the element of the solid angle dΩ=dνdω. 

If the generator and the detector of microparticles are located at a large distance from the 

considered part of the reflecting surface (Figure 2), then the TPDF ρ(ν,ω/ϑ,γ)|Gνω| (2.1) determines 

the volumetric diagram of elastic scattering of these particles on this surface 

                                                D(ν,ω/ϑ,γ) = ρ(ν,ω/ϑ,γ)|Gνω|.                                         (2.4) 



 
 

Fig. 3 Area of uneven surface, reflecting microparticles, where: 

ϑ, γ are the angles defining the direction of microparticle incidence on a reflecting surface; 

ν, ω are the angles defining the direction of reflection of the microparticle from this surface; 

af is a unit vector indicating the direction to the microparticle generator; 

n is the unit normal vector to the surface at the point where the microparticle incidence; 

ar is a unit vector indicating the direction of motion of the microparticle after an elastic 

collision with a reflective surface  

 

                             

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Specular reflection of a microparticle from a portion of an uneven surface according to the 

laws of geometric optics: 1) elastic reflection of a particle (or light ray) occurs in the plane of its 

incidence; 2) the angle of reflection of the particle (or ray of light) Q2 is equal to the angle of its 

incidence Q1 (i.e., the condition Q2 = Q1 is satisfied) 



                        
 

Fig. 5 Illustration for determining the functional relationship between angles , φ and angles ν, ω, 

if angles ϑ, γ are known: where Q2  = Q1 and vectors naa rf


,,

 
lie in the same plane AOB 

 

In the case where the microparticle detector is located at a short distance from the 

considered part of the reflecting surface, then in order to find the volumetric DESM D(ν,ω/ϑ,γ), 

the right part of Expression (2.4) should be integrated over all angles ν and ω, along which 

reflected microparticles can enter the detector aperture (or at one point on the plate of the electron 

diffraction pattern or radiographs). 
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ddGD  =                               (2.5) 

This case is not considered in this article. That is, in the future we will assume that the 

generator and the detector of microparticle are so far from the reflecting surface area that it is 

permissible to use the simplified formula (2.4). 

 

2.2 Functional relationship between the angles ,φ and ν,ω/ϑ,γ 

Let's find the functional relationships (2.2) and (2.3). Figure 5 shows the unit vectors ,,, naa rf



whose tails coincides with the origin of the local reference system XYZ (located at the point of 

collision of the microparticle with the surface), and their heads are given by the following 

coordinates: 

                                   sin,coscos,sincos,, == fzfyfxf aaaa


                                
(2.6) 

–- a unit vector, indicating the direction on the microparticle generator (Figure 2 and 3); 



                                   sin,coscos,sincos,, == rzryrxr aaaa


                     
            (2.7) 

– a unit vector, indicating the direction of movement of a microparticles after an elastic collision 

with a reflecting surface. 

                                     sin,coscos,sincos,, == rzryx nnnn


                                  

– a unit normal vector to the surface at the point of incidence of the microparticle; 

Figure 5 shows that when the laws of geometric optics are satisfied (i.e., when Q2  = Q1), the 

normal vector n determines the direction of the bisector of the isosceles triangle AOB whose sides 

are the unit vectors af and ar, 

Obviously by setting the coordinates of the point N that divides the segment AB in half, we 

get the coordinates of the head of the vector b, the direction of which coincides with that of the 

normal vector n. Using the coordinates of the head of the vector ar  (2.6) and the head of the vector 

ar (2.7), and based on the methods of analytical geometry [29 - 31], we obtain 
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From the scalar product of the vectors b and k = {0,0,1} (where k indicates the direction of 

the OZ axis, see Figure 5)
 
( )  sin)2/cos( kbkbkb


=−= , we define the angle  
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                                                                                                                                                (2.8)  

which is the desired functional relationships (2.2).                                                                                                                                       

Figure 5 shows that φ is the angle between vectors j = {0,1,0} and c, where j defines the 

direction of the axis OY, and vector c is the projection of vector b onto the XOY plane. 
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(2.9) 

 

From the scalar product of the vectors ( ) cosjcjc


= , we define the angle φ 

 

   

( )
( ) ( )

,
coscoscoscossincossincos

coscoscoscos
arccosarccos

22 













+++

+
=


















=






jc

jc



 

                                                                                                                                                              (2.10)
 

which is the second desired functional relationship (2.3).    



2.3 Jacobian of the transformation of the variables , φ into the variables ν, ω for given ϑ, γ 

Let's introduce the notations  

a = cosν cosω + cosϑ cosγ;      b = cosν sinω + cosϑ sinγ;     d = sinν + sinϑ;    aν = – sinν cosω;   

bν = – sinν sinω;    cν = cosν;     aω = – cosν sinω;     bω = cosν cosω.                              (2.11) 

In this case, expressions (2.8) and (2.10), taking into account the polysemy of inverse 

trigonometric functions, take the form 
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     (2.13) 

where m = 0, 1, 2, 3, … 

From Figures 2, 3, 5 it can be seen that the angles , φ can take the values [0, π/2],                   

φ[0, π]. Let's also take into account that the principal branches of inverse trigonometric functions 

are enclosed within: arcsin(x)[– π/2, π/2], arccos(x)[0, π]. Therefore, in expressions (2.12) and 

(2.13) we assume m = 0 and choose (+), and as a result we obtain unambiguous functional 

relationships 
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      (2.15) 

Let's find the Jacobian of the transformation |Gνω| variables , φ into variables ν, ω. To do 

this, we calculate the determinant of the matrix [32, 33] 

                                

.2121

22

11















−








=

















=
ffff

ff

ff

G

            

              (2.16) 

Substituting functions (2.14) and (2.15) into the determinant (2.16), and taking into account 

the notation (2.11), we obtain the desired Jacobian of the transformation 
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           (2.17) 

This result was obtained by the author together with  Dr. S.V. Kostin. 

  

     

 



2.4 Definition of TPDF ρ(,φ) 

Let’s obtain the ТPDF ρ(,φ) (2.1). To do this, represent a homogeneous and isotropic uneven 

reflecting surface as a two-dimensional stationary random process (x,y) of changing the height of 

the irregularities (Figure 3). Any azimuthal cross-section (for example, along the Y axis) of the 

process (x,y) is a one-dimensional stationary random process (y). 

Suppose we know the one-dimensional probability density function (OPDF) ρ[(y)] of the 

heights of irregularities (y). It will be shown below that on the basis of the OPDF ρ[(y)], it is 

possible to obtain the OPDF ρ[ (y)] of the derivative of this stationary random process  (y). 

Taking into account that  (y) = tg, where  is the angle between the tangent to the process 

 (y) and the Y axis (see Figure 4), we make in ρ[ (y)] the change of the variable  to . As a 

result, we obtain the OPDF of angles  in the azimuthal section  (y) under study 

                                                            ρ() = ρ(tg)
2cos

1
,                                                (2.18)                   

where 


 2cos

1
=G

 

is the Jacobian of the transformation.                             

Figure 4 shows that between the angles  and  there is a unambiguous unique functional 

dependence  + + π/2 = π, whence it follows       

                                                                  = π/2 – .                                                             (2.18) 

         In view of this expression, we make in OPDF ρ() (2.18) the change of the variable   to   

                                       ρ() = ρ[tg(π/2 – )]
) /2(cos

1
2  −

,                                                                

with the Jacobian of the transformation .1=G
 

Take into account that tg(/2 – ) = ctg,  cos(/2–) = sin. As a result, we obtain the 

OPDF of angles  
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In the case of statistical independence of the angles  and φ (which is typical for many 

uneven surfaces), the joint ТPDF ρ(,φ) (2.1) can be represented as 
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For homogeneous and isotropic statistically uneven surfaces, the angle φ, which determines 

the azimuthal direction of the projection of the normal to the XOY plane (see Figure 5), can be 



uniformly distributed in the interval from 0 to 2π, and the OPDF ρ(φ) can be given by the 

expression 
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Substituting (2.21) into (2.20), we obtain the TPDF (2.1) 
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If the reflecting surface is non-isotropic, then the OPDF ρ(φ) can be specified by another 

function, for example, 
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In this case, the TPDF (2.1) will have the form 
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Note once again that the ТPDF ρ(,φ) (2.22), (2.24) and (2.24a) are obtained for the case 

where an uneven surface can be represented as a two-dimensional homogeneous random process 

of changing the heights of the irregularities (x,y) (see Figure 3). At each point with x,y 

coordinates, the random variable  has the same averaged characteristics: OPDF, expected value, 

variance, and other moments and central moments.  

 

2.5 The overall form of the volumetric diagram of elastic scattering of microparticles 

The overall form of volumetric DESM is expressed by (2.4) 

          D(ν,ω/ϑ,γ) = ρ(ν,ω/ϑ,γ)|Gνω| = ρ{=f1(ν,ω/ϑ,γ); φ=f2(ν,ω/ϑ,γ)}|Gνω|.                 (2.25) 

In view of (2.17) and (2.22), expression (2.25) takes the form 

( )
( ) 

( )   ( ) ( )

( )
.,/,

,/,sin

1

2

1
,/,

222221

1

2
dbaba

baabcbabad
fctg

f
D

+++

−+−
=

=
== 


  

We take into account that 



2

2

sin

1
1 =+ ctg , whence follows 1

sin

1
2

−=


ctg , therefore, 

this expression can be represented in the form 
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Substituting the functional dependence (2.14) ,arcsin
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Simplifying this expression, we find the overall form of volumetric DESM (2.25) 
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where a, b, d, aν, bν, cν, aω, bω  are given by expressions (2.11). 

Note that formally in expression (2.27), the derivative  was replaced by a quantity 
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In the case where the ТPDF ρ(,φ) has the form (2.24) or (2.24a) (i.e., when the reflecting 

surface is non-isotopic), then instead of the ТPDF (2.27), taking into account (2.15), we obtain 
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(2.28a)   

Formulas (2.27), (2.28) and (2.28a) can be considered as DESM on a statistically uneven 

surface under the following conditions (see §2.1): 

- the uneven surface is statistically homogeneous; 

- the irregularities of this surface are quite smooth and large-scale in comparison with the 

size of the microparticles; the reflection of microparticles from all local sections of the uneven 

surface occurs according to the laws of geometric optics (see Figures 4 and 5); 

- the portion of the uneven surface involved in the reflection of microparticles is located at a 

large distance from the generator and detector of microparticles (Figureу 2). 

 

2.6 OPDF ρ[ (r)] derivative of the stationary random process (r) 

In § 2.4 it was shown that in order to determine the DESM on a statistically uneven reflecting 

surface (x,y), any cross-section of which is described by a stationary random process (r) (Figure 

3), it is necessary to find the OPDF ρ[ (r)] derivative of this process. 



To search for ρ[ (r)], let's use the method proposed in [34, 35]. If the OPDF ρ() of the 

one-dimensional stationary random process (SRP) (r) =  is known, then the OPDF ρ( ) of the 

derivative of this process can be obtained on the basis of the following formal procedure [34, 35]: 

a) The given OPDF ρ(ξ) is represented as the product of two probability amplitudes ψ (ξ): 

                                                        ( ) ( ) =)( .                                                (2.29) 

b) Two Fourier transforms are performed [34, 35] 
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where

                                                            corr

22  = ,                                                         (2.32) 

     ξ   is the standard deviation of the stationary random process ξ(r) = ξ; 

     rcor is the radius of autocorrelation of this process.  

c) The desired OPDF of the derivative of the SRP ξ(r) = ξ is [34, 35]: 

                                           ( ) ( ) ( ) .)(
2*  ==                                        (2.33)         

Let’s apply the procedure (2.29) through (2.33) to find the OPDF ρ[ (r)] of the derivative 

of stationary random process with different statistics of heights of irregularities. 

1] OPDF of the derivative of a Gaussian stationary random process 

Suppose that at each point r of the SRP ξ(r), the random variable ξ (in particular, the height 

of irregularities) is distributed according to the Gaussian law 
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where ξ1
2 and  аξ1 are the variance and expected value of the given process ξ(r). 

According to (2.29), we represent the OPDF (2.34) as the product of two probability 

amplitudes  
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Let's insert (2.35) into (2.30) and (2.31)              
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Let's perform the integration 

                  },/exp{)]2/(2/[exp
)2/(2

1
)( 1

2

1

2

4 2

1

2



 



−= ia              (2.38) 

                              }./exp{)]2/(2/[exp
)2/(2

1
)(* 1

2

1

2

4 2

1

2



 



−−= ia             (2.39) 

In accordance with (2.33), we multiply (2.38) and (2.39), as a result, we obtain  
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         (2.40) 

where according to (2.32)                            = ξ1 /rcor1                                                        (2.41) 

is the standard deviation of the differentiated stationary random process  (r) =  ;  

rcor1 is the autocorrelation radius of the initial SRP ξ(r) = ξ with the Gaussian distribution of the 

height of the irregularities. 

2]OPDF derivative of the SRP with a uniform distribution of the heights of the irregularities 

Suppose that at each point r of the SRP ξ(r), the random variable ξ is distributed according 

to the uniform law in the interval ξ1<ξ <ξ2 
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According to (2.29), we represent the OPDF (2.42) as the product of two probability 

amplitudes  
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Let's insert (2.43) into (2.30) and (2.31)              
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As a result of calculation by the formula (2.45), we obtain 

      .
/)(2

}/exp{}/exp{
}/exp{

2

11
)(

12

12

12

2

1












−

−
=

−
= 

i

ii
di           (2.47) 



Take into account that (ξ2 – ξ1)/2 = аξ2 is the expected value, ξ1 – ξ2 = l is the base of the 

considered SRP ξ(r). Now we can write ξ1= аξ2 – l/2 and ξ2 = аξ2 + l/2, while the expression (2.47) 

takes the form 
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Using the expression 
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As a result of similar calculations by the formula (2.46), we obtain 
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Substituting (2.49) and (2.50) in (2.33), we finally find      
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rcor 2 is the autocorrelation radius of the initial SRP ξ(r) = ξ with a uniform distribution of the 

height of the irregularities. 

It is taken into account that according to (2.32) 
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l
is the dispersion of the SRP ξ(r) = ξ  with a uniform distribution of the 

heights of the irregularities (2.42). 

Thus, for an SRP ξ(r) = ξ with a uniform distribution of the heights of the irregularities, 

OPDF ρ( ) its derivative  is a distribution of the type sin2 / 2 (2.51) with the scale parameter 

k2 (2.52). 

3] OPDF derivative of the SRP with the Laplace distribution of the heights of irregularities 

Let at each point r of the SRP ξ(r) = ξ a random variable ξ is distributed according to the 

Laplace law 
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where 1/ L is the scale parameter of this process ξ(r) = ξ ; 

            аξ3  is the shift parameter (expected value). 



According to (2.29), we represent the OPDF (2.54) as the product of two probability 

amplitudes  
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Let's insert (2.56) into (2.30) and (2.31)              
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We rewrite these expressions in the form  
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Let's perform the integration 
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Substituting (2.61) and (2.62) in (2.33), we find      
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The dispersion of the Laplace distribution (2.54) is 22

3 2 L = , therefore, according to (2.32), 

in this case 
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where rcor3 is the autocorrelation radius of the initial SRP ξ(r) = ξ with the Laplace distribution of 

the height of irregularities. 

Substituting (2.64) in (2.63), we obtain 
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= is the scale parameter. 



Thus, for the Laplace SRP ξ(r) = ξ of the OPDF ρ( ) its derivative   is the Cauchy 

distribution (2.65) with the expected value (i.e., the shift parameter) equal to zero. 

4] OPDF derivative of the SRP with the distribution of the height of the irregularities 

according to the Cauchy law 

Let at each point r of the SRP ξ(r) = ξ a random variable ξ be distributed according to the 

Cauchy law 
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where K is the scale parameter of this process ξ(r) = ξ ; 

           аξ4  is the shift parameter (expected value). 

Performing actions (2.29) through (2.33), the reverse of transformations (2.57) through 

(2.63), we obtain 
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To find the scale parameter k4, we note that the dispersion (variance) of the Cauchy 

distribution is not defined, i.e., tends to infinity, but the heights of the real surface irregularities 

can be distributed only by a truncated Cauchy law with effective dispersion ξ4
2 ⁓ 25K

2. 

Therefore, in this case, according to (2.32), we can write 
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                                                    (2.68)        

where rcor4 is the autocorrelation radius of the initial SRP ξ(r) = ξ with the distribution of the 

heights of irregularities ξ according to the Cauchy law (2.66). 

In this case, we obtain the following estimate of the scale parameter 
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Thus, for an SRP with a distribution of roughness heights ξ(r) = ξ according to the Cauchy 

law (2.66), the OPDF ρ( ) of its derivative   is the Laplace distribution (2.67) with the scale 

parameter (2.69) and the shift parameter (expected value) equal to zero. 

5] OPDF derivative of the SRP with the distribution of the heights of the irregularities 

according to the multilayer sinusoidal law 

Consider the scattering of microparticles (in particular, electrons or high-frequency photons) 

on a single crystal. Falling microparticles can be reflected from different atomic layers of the 

crystal lattice of a single crystal (Figure 6a). This case is equivalent to the scattering of 

microparticles on a multilayer reflecting surface, each layer of which can be defined by a two-



dimensional homogeneous SRP (x,y), repeating on average the structure of a planar atomic lattice 

(Figure 6b). 

 

 

 

 

 

 

 

 

       

                             а)                                                          b)                       c)  

Fig. 6 a) Reflection of falling microparticles from various atomic layers of the crystal lattice of a 

single crystal; b) Scattering of microparticles on the multilayer surface of the crystal, with each 

layer being considered as a separate uneven surface of the sinusoidal type; с) Multi-humped 

sinusoidal OPDF of the height of the irregularities of the multilayer surface of the crystal (2.71) 

 

If only the upper layer of the crystal is involved in the scattering of microparticles, then it 

can be assumed that in each azimuthal cross-section r of such an SRP ξ(r) = ξ, a random value ξ 

(i.e., the height of the unevenness of the upper layer of the crystal surface) is distributed according 

to the sinusoidal law  
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where l1 is the thickness of one (i.e., the first) reflecting layer of a single crystal (Figure 6c). 

In the case where several identical crystal layers are effectively involved in the scattering of 

microparticles (Figure 6b), then the multi-humped sinusoidal OPDF of the heights of irregularities 

(Figure 6c) should be used. 
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where n1 is the number of identical uneven sinusoidal layers lying in the interval [0, l2], here          

l2 = n1l1 is the depth of the multilayer crystal surface of the effectively scattering microparticles. 



According to (2.29), we represent the OPDF (2.71) as the product of two probability 

amplitudes 
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Let's insert (2.72) into (2.30) and (2.31)              
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Performing integration [see Appendix 2, (A.2.12) and (A.2.13)], we obtain                    
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Substituting (2.74) and (2.75) into (2.33) [see Appendix 3, (A.3.12)], we find 
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The dispersion (variance) of the multi-humped sinusoidal distribution (2.71) is equal to 
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Therefore, in this case, according to (2.32), we have the scale parameter                                                         
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where rcor5 is the autocorrelation radius of one uneven layer of a sinusoidal crystal. 

OPDF (2.76) can be represented in the form 
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Taking into account the trigonometric formula 
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expression (2.79), we obtain another form of the desired OPDF 
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       (2.80)

        

 

Thus, for an SRP with a multi-humped sinusoidal OPDF of the heights of irregularities 

(2.71) of the OPDF ρ( ) its derivative  is distribution (2.76) [or in another form (2.80)] with 

scale parameter (2.78). 

Using the formal procedure (2.29) through (2.33), we can obtain the OPDF ρ( ) of the 

derivative   for many other stationary random processes with different statistics of the height of 

irregularities . 

OPDF ρ( ) (2.40), (2.51), (2.65), (2.67), (2 of irregularities.76) and others can be used in 

many problems of static physics. 

 

3 Results 

Based on the method proposed in Section 2, in this part of the paper we obtain formulas for 

calculating volumetric diagrams of elastic scattering of microparticles (DESM) on statistically 

uneven surfaces when the conditions of the Kirchhoff approximation are met. 

 

3.1 Volumetric diagrams of elastic scattering of microparticles on statistically uneven 

surfaces 

1] Volumetric diagram of elastic scattering of microparticles on a reflecting surface with a 

Gaussian distribution of the heights of irregularities 

As an example, we consider the procedure for obtaining a volumetric DESM D(ν,ω/ϑ,γ) (2.27) for 

the case where the homogeneous and isotropic irregularities (x,y) of the reflecting surface (see 

Figure 3) at each point with coordinates x,y are distributed according to the law of Gauss (2.34). 

In this case, the OPDF ρ( ) of the derivative of this stationary random process is also 

Gaussian (2.40) 
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where
  = ξ1 /rcor1.      



In accordance with the algorithm described at the end of § 2.5, instead of   in (3.1), we 

substitute 
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           (3.2) 

Substituting (3.2) into (2.27), we obtain the explicit form of the desired DESM in the case of 

a Gaussian distribution of the heights of the irregularities of the reflecting surface 

  

( )
( ) ( )

,
2

exp
8

1
,/,

22222

22

23 bad

baabcbabad

d

ba
D

+

−+−













 +
−=










          

(3.3) 

where  = ξ1 /rcor1; the values of  a, b, d, aν, bν, cν, aω, bω  are given by expressions (2.11). 

Under the conditions specified at the end of §2.5, the expression (3.3) is a formula for 

calculating volumetric DESM on a large-scale (as compared to the size of microparticles) uneven 

reflecting surface with a Gaussian distribution of the heights of the irregularities (x,y). 

The scattering diagrams calculated by formula (3.3) for various values of ϑ, γ, ξ1  and rcor1 

are shown in Figure 7 (see Appendix 4). 

                
                

            a)  ϑ = 650, γ = 00, ξ1 = 3,  rcor1= 5                      b)   ϑ = 430,  γ = 00, ξ1 = 3,   rcor1= 5 

 

                         
 

            c)  ϑ = 600, γ = 00, ξ1 = 5,  rcor1 = 5                   d)  ϑ = 230, γ = 00, ξ1 = 17,  rcor1= 5 

 

Fig. 7 Volumetric DESM on a homogeneous and isotropic uneven surface with a Gaussian 

distribution of the heights of irregularities. The calculations were performed according to the 

formula (3.3) for various values of the parameters ϑ, γ, ξ1 and rcor1. Here and further, DESM are 

calculated using MathCad software 



2] Volumetric DESM on a reflecting surface with a uniform distribution of the heights of 

irregularities 

Let the homogeneous and isotropic irregularities (x,y) of the reflecting surface, at each point with 

coordinates x,y  be distributed according to the uniform law (2.42). In this case, we use the OPDF 

ρ( ) (2.51). Performing actions similar to (3.1) through (3.3), we obtain a formula for calculating 

volumetric DESM on a given surface 
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r
k  is the scale parameter.

      

The results of calculations using the formula (3.4) for different values of the parameters ϑ, γ, 

l  and rcor2 are shown in Fig. 8 (see Appendix 5). 

 

              

          a)  ϑ = 650,   γ = 00,  l = 3,   rcor2= 5                               b)   ϑ = 430,  γ = 00,  l = 3,   rcor2= 5 

 

                

                            

  

          c)   ϑ = 600,   γ = 00,  l = 5,   rcor2 = 5                             d)   ϑ = 230,   γ = 00,  l = 17,  rcor2 = 5 

 

 

Fig. 8 Volumetric DESM on a homogeneous and isotropic uneven reflecting surface with a 

uniform distribution of the heights of irregularities. The calculations are performed according to 

the formula (3.4) 

 

 

 



2] Volumetric DESM on a reflecting surface with a Laplace distribution of the heights of 

irregularities 

Let the homogeneous and isotropic irregularities (x,y) of the reflecting surface, at each point with 

coordinates x,y be distributed according to the Laplace law (2.54). In this case, we use the OPDF 

ρ( ) (2.65). Performing actions similar to (3.1) through (3.3), we obtain a formula for calculating 

volumetric DESM on a given surface 
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where 
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cor
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
=  is the scale parameter. 

The results of calculations using the formula (3.5) for different values of the parameters ϑ, γ, 

L and rcor3 are shown in Figure 9 (see Appendix 6). 
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                a) ϑ = 650,   γ = 00,  L = 3,   rcor3 = 5                         b) ϑ = 430,  γ = 00,  L = 3,   rcor3 = 5 

 

 

                        

 

               c)  ϑ = 600,   γ = 00,  L = 5,   rcor3 = 5                           d)  ϑ = 230,   γ = 00,  L = 17,   rcor3 = 5 

 

 

Fig. 9 Volumetric DESM on a homogeneous and isotropic uneven surface with a Laplace 

distribution of the heights of irregularities. The calculations are performed according to the 

formula (3.5) 

 

 

 



4] Volumetric DESM on a reflecting surface with a distribution of the heights of irregularities 

 according to the Cauchy law 

Let the homogeneous and isotropic irregularities (x,y) of the reflecting surface, at each point with 

coordinates x,y be distributed according to the Cauchy law (2.66). In this case, we use the OPDF 

ρ( ) (2.67). Performing actions similar to (3.1) through (3.3), we obtain a formula for calculating 

volumetric DESM on a given surface 
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(3.6)  

where 
K

corr
k

25

4
4   is the scale parameter. 

The results of calculations using the formula (3.6) for different values of the parameters ϑ, γ, 

K and rcor4 are shown in Figure 9 (see Appendix 7). 

 

          

 

                   a)  ϑ = 750,   γ = 00,  K = 3,   rcor4 = 8                              b)   ϑ = 380,  γ = 00,  K = 9,   rcor4 = 8 

 

             

      

                  c)   ϑ = 160,   γ = 00,  K =12,   rcor4 = 8                              d)   ϑ = 870,   γ = 00,  K = 5,   rcor4 = 6 

 

Fig. 10 Volumetric DESM on a homogeneous and isotropic uneven surface with distribution of 

the heights of irregularities according to the truncated Cauchy law. The calculations are performed 

according to the formula (3.6) 

  

Analysis of the scattering diagrams shown in Figures 7 through 10, as well as of other 

DESMs  calculated by the formulas (3.3) through (3.6), shows that the elastic scattering of 



microparticles on one upper layer of a statistically uneven reflecting surface weakly depends on 

the statistics of the heights of its irregularities. 

Single-layer surfaces with a distribution of the heights of irregularities according to the 

Gauss law, the uniform law, the Laplace law, and the Cauchy law scatter microparticles almost 

equally. Some differences between DESMs shown in Figures 7 through 10 are observed at small 

slip angles of incident microparticles ϑ and large values of the ratio ξm / rcor. 

 

3.2 Volumetric diagram of elastic scattering of microparticles on a multilayer surface of a 

crystal with a multi-humped sinusoidal distribution of heights of irregularities 

Let’s consider the scattering of microparticles on an n1-layer surface of a crystal, each layer of 

which is a homogeneous and isotropic two-dimensional uneven surface (x,y) with sinusoidal 

irregularities (Figure 6b). In this case, we use the multi-humped sinusoidal distribution of the 

height of the irregularities ξ (2.71), while the OPDF of ρ( ) its derivative is expression (2.76) 

with the scale parameter η (2.78) 
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(3.7) 

 

   

or the same function in the form (2.80) 
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(3.8) 

 

 

To obtain a volumetric DESM on a multilayer crystal surface, we use the method described 

in § 2.5 [similar to (3.1) through (3.3)]. Replace the derivative    in (3.7) [or in (3.8)] by the value 

2

22

d

ba +
, and substitute the resulting expression in (2.27). As a result, we obtain the formula for 

calculating the DESM on a multilayer crystal surface 
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or the same formula in another form 
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                                                                                                                                                 (3.10) 

  

 

where according to (2.11) 

     a = cosν cosω + cosϑ cosγ;   b = cosν sinω + cosϑ sinγ;   d = sinν + sinϑ;    aν = – sinν cosω;                             

    bν = – sinν sinω;     cν = cosν;     aω = – cosν sinω;     bω = cosν cosω ; 

according to (2.78)                                        ,
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where  

l1  is the thickness of one reflecting layer (i.e., the horizontal atomic plane) of the crystal (Fig. 6b); 

l2 = l1n1 is the depth of the multilayer surface of the single crystal, effectively involved in the   

               elastic scattering of microparticles (s);  

n1 is the number of uneven layers of a single-crystal (sinusoidal type) that fit in the interval [0, l2]; 

rcor5  is the autocorrelation radius of one uneven layer of a sinusoidal type. This autocorrelation 

radius is approximately equal to the average radius of curvature of the sinusoidal irregularities 

of a single crystal layer; 

ϑ, γ  are the angles that specify the direction of motion of the microparticle beam incident on the 

crystal surface (Figures 2, 3, 5);  

ν, ω are the angles that specify the direction of movement of microparticles reflected from the 

surface of the crystal toward the detector (Figures 2, 3, 5). 

Expressions (3.9) and (3.10) are the same formula for calculating DESM on a multilayer 

crystal surface, only written in different trigonometric forms. The formula (3.9) will be called the 

cosine-version of the DESM on the multilayer resulting surface, and the formula (3.10) is the 

sinus-version of the same DESM. 

The DESM calculated by the formula (3.9) for various values of the five parameters ϑ, γ, l1, 

n1 and rcor5 are shown in Figure 11 (see Appendix 8). 

 



                    
                  a)  ϑ = 450,   γ = 00,   n1 = 64,                                                b)   ϑ = 450,  γ = 00,   n1 = 65, 

                       l1 =10–11cm,   rcor5 = 6×10–9cm                                                l1 =10–11cm,   rcor5 = 6×10–9cm 

 

 

 
              c)  ϑ = 450,  γ = 00,   n1 = 126,                                                      d)  ϑ = 450,  γ = 00,   n1 = 127,   

                  l1 =10–11cm,   rcor5 = 6×10–9cm                                                      l1 =10–11cm,   rcor5 = 6×10–9cm 

 

            
             e)  ϑ = 450,   γ = 00,   n1 = 46,                                                        f)  ϑ = 450,   γ = 00,   n1 = 47,   

                  l1 =10–11cm,   rcor5= 1,4×10–9cm                                                  l1 =10–11cm,   rcor5= 1,4×10–9cm 

 

 

 

 

 

 

 

 

 

 

 

 
              g)  ϑ = 450,  γ = 00,   n1 = 24,                                              h)  ϑ = 450,  γ = 00,   n1 = 23,   

                     l1 =10–11cm,   rcor5 = 4×10–9cm                                               l1 =10–11cm,   rcor5 = 4×10–9cm 

           

Fig. 11 Volumetric diagrams of elastic scattering of microparticles on a multilayer crystal surface, 

calculated by the formula (3.9) for various values of the parameters ϑ, l1, n1 and rcor5  



 

If each crystal layer has the same anisotropy, for example, of type (2.23), then, taking into 

account (2.24) and (2.28), we obtain the following formula for calculating the volumetric DESM 

for this case 
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                                                                                                                                               (3.12)      

The results of calculations by the formula (3.12) are shown below in Fig. 11a (Appendix 9). 

    

                                  a)                                                                   b) 

 

Fig. 11a Volumetric DESM on a multilayer non-isotropic crystal surface calculated by the 

formula (3.12) at ϑ = 450, γ = 00, l1 =10–11cm,  rcor5= 4×10–9cm, a) n1 = 48  and  b) n1 = 47 

 

 

If each crystal layer has the same anisotropy, for example, of type (2.23a), then, taking into 

account (2.24a) and (2.28a), we obtain the following formula for calculating volumetric DESM for 

this case 
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                                                                                                                   (3.12а)      



The results of calculations by the formula (3.12a) are shown in Fig. 11b (see Appendix 10). 

       

                                   a)                                                                  b) 

 

Fig. 11a Volumetric DESM on a multilayer non-isotropic crystal surface calculated by the 

formula (3.12a) at ϑ = 450, γ = 00, l1 =10–11cm,  rcor5= 4×10–9cm, a) n1 = 42 and b) n1 = 37 

 

Let’s analyze the volumetric diagrams of elastic scattering of microparticles shown in 

Figures 11, 11a and 11b. 

1] Agreement with experiment 

A separate study should be devoted to comparing the calculations according to the formulas 

presented in this article with experimental data. But, already at this stage, it can be noted that 

volumetric DESMs calculated by the formula (3.9) (Figure 11) correspond to the results of 

experiments on the diffraction of particles and high-frequency electromagnetic waves on a crystal 

(see Figures 12, 12a). 

 

 

 

 

 

 

 

 

 

              a)                                                     b)                                               c) 

 

Fig. 12 a) Electron diffraction pattern of the Ti50Ni25Cu25 alloy (http://dream-journal. 

org/issues/2018-6/2018-6_233.html); b) Electron diffraction on gold. The thickness of the gold 

plate was about 250Å = 2.5×10–6cm. The size of the gold atom is approximately equal to                

0,28 nm = 2.8×10–8cm. Thus, in the gold plate there were approximately 100 layers (i.e., atomic 

planes); b) Illustration of an X-ray diffraction pattern obtained by diffraction of photons on a 

crystal. Photos and drawing are taken from the World Wide Web in the public domain 



 

 

 

 

 

 

 

 

 

 

              a)                                                    b)                                                c) 

Fig. 12a a) Electron diffraction pattern of the NaCl standard;  b) Electron diffraction pattern of a 

polycrystal of hexagonal nickel hydride NiH2 (http://ignorik.ru/docs/lekciya-13-eksperimentalenie 

-metodi-kristallofiziki.html); c) Electron diffraction on aluminum Al. https://www.researchgate. 

net/publication/295974108_Electron_Diffraction. Photos are taken from the world wide web in the 

public domain 

 

Formula (3.9) has a significant advantage in that it allows a more subtle analysis of the 

process of scattering of microparticles on a crystal than methods based on the idea of the existence 

of de Broglie waves. A selection of the parameters ϑ, l1, n1 and rcor5 can lead to similarity with 

experimentally obtained electron diffraction patterns or X-ray diffraction patterns, and more 

detailed information on the structure of the crystal or other multilayer reflecting surface is 

disclosed. 

2] "Adjustment" of the scale parameter η 

To take into account the various features of the crystal lattice, a scale parameter (2.78)  
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Perhaps such an "adjustment" η will lead to greater similarity of the results of calculations 

by the formula (3.9) with real electron diffraction patterns or radiographs. At the same time, the 

"adjustment" of the scale parameter (2.78) can make it possible to evaluate additional features of 

the structure and / or defects of the crystal lattice. 

When "adjusting" η, however, it is necessary to consider that equation (3.9) must satisfy the 

condition 

http://ignorik.ru/docs/lekciya-13-eksperimentalenie%20-metodi-kristallofiziki.html
http://ignorik.ru/docs/lekciya-13-eksperimentalenie%20-metodi-kristallofiziki.html
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where the angle ν varies from 0 to π/2; the angle ω varies from 0 to 2π. 

3] Even and odd number of crystal layers 

From the diagrams shown in Figure 11, it can be seen that if the even number of layers n1 

effectively involved in the reflection of microparticles, then a minimum (dip) is observed in the 

very center of the diagram; and if the number of reflecting layers is odd, then a maximum (peak) is 

observed in the very center of the diagram. The same effect is found in experiments (Figure13). 

It should be noted, however, that for n1 = 4 (i.e., for an even number of layers) in the center 

of the diagram, there is not a minimum, but a maximum (peak) (Figure 20). 

 

                            

                                                  а)                                                         b) 

 

Fig. 13 a) In a number of experiments on the diffraction of microparticles, a dark spot is observed 

in the center of the electron diffraction pattern or X-ray diffraction pattern. b) In a number of other 

similar experiments, a bright spot is observed in the center of the electron diffraction pattern or 

radiograph 

 

 

4] The falling velocity v of microparticles and the number of reflective layers n1 

It should be expected that the number of layers n1, which are penetrated by microparticles 

incident to the surface of the crystal, mainly depends on their energy E [i.e. n1 = f (Е)]. More 

precisely, for incident fermions (in particular, electrons), the immersion depth in the thickness of 

the reflecting surface (i.e., the number of layers n1) mainly depends on their speed (the momentum 

or kinetic energy), and for incident bosons (in particular, photons) from their frequency. More 

generally, it is possible to find the dependence  

                                                  n1 = f (Е, l1, rcor5, ϑ, γ).                                               (3.15) 

   



The expression (3.15) can also take into account the effects of shading part of the deep 

sections of the reflecting surface at small angles ϑ, etc. 

The determination of the functional dependence (3.15) will make it possible to more 

accurately match the results of calculations by the formula (3.9) with experimental data on the 

diffraction of microparticles on periodic structures such as crystals and to obtain additional 

information about the structure of the reflecting surface. 

In particular, we consider the DESM (3.9) as a function of the number of layers n1 of the 

reflecting surface of the single crystal D(n1) with the six fixed parameters ϑ, γ, ν, ω, l1, rcor5. The 

results of calculations by the formula (3.9) D(n1) in this case are shown in Fig. 14a (Appendix 11). 

                                    

                                                                            a)  

                                              

                                                  

                                                                     b) 

Fig. 14 a) Dependence of the DESM (3.9) on the number of layers n1 of the reflecting surface of 

the single crystal, which, in turn, depends on the velocity v (more precisely, energy E) of the 

microparticles incident on this surface (3.15). The calculations were performed according to the 

formula (3.9) D(n1) as a function of the number n1, which varies in the range from 40 to 50 layers, 

with the following constant parameters: ϑ = 450, γ = 00, ν = 450, ω = 00, l1 =10–11cm,                           

rcor5= 9×10–9cm;  b) The intensity of an electron beam I scattered on a nickel single crystal at a 

constant reflection angle, depending on the square root of the voltage U, accelerating particles in 

an electron gun (electron generator). This experimental dependence was first obtained in 1927 by 

Clinton Davisson and Lester Germer [1] 

 

n1 

D(n1) 

I 



Considering that the number of crystal layers penetrated by incident microparticles depends 

on their speed n1 = f (v), these calculations using the formula (3.9) D(n1) are in good agreement 

with the results of K. Davisson and L. Germer's experiment (1927) on electron diffraction on a 

nickel crystal [1] (Figure14b). 

Formula (3.9) D(n1) allows one to perform calculations in a much wider range of n1 values 

(Figure 15). At the same time, Figure 15a shows that the in range n1 from 0 to 40 layers D(n1) can 

take negative values. Since formula (3.9) D(n1) is an OPDF, then at first glance this looks like an 

absurd result. 

 1             

                                                                    а)                                                     

              
                                                                    b)                                                        

Fig. 15 Results of calculations by the formula (3.9) D(n1) as a function of the number of layers n1, 
varying in the range from a) 0 to 100 layers; b) 40 to 100 layers, with the following constant 

parameters ϑ = 450,  γ = 00,  ν = 450, ω = 00, l1 =10–11cm, rcor5= 9×10–9cm. Calculations performed 

using MathCad software 

 

n1 

n1 

D(n1) 

D(n1) 



 

Negative values in the calculations by formula (3.9) can be “eliminated” by assuming that in 

the case under consideration (that is, with l1 =10–11cm и rcor5= 9×10–9cm), the depth of the 

reflecting layer cannot be less than l2 = l1 n1 = 40×10–11 = 4×10–10cm. 

In another case, when l1 =10–11cm  and  rcor5 = 2×10–11cm - corresponds to the size of an 

atom that effectively reflects electrons or high-frequency photons, a calculation by the formula 

(3.9) D(n1) leads to the result shown in Figure 16. In this case, the prohibition applies only to l2 in 

the 3 through 4 first layers. 

 

                                                                                      

 

Fig. 16 The result of the calculation by the formula (3.9) D(n1) for the following unchanged 

parameters ϑ = 450,  γ = 00,  ν = 450, ω = 00, l1 =10–11 cm,  rcor5= 2×10–11cm, and the experimental 

dependence obtained by K. Davisson and L. Germer in the study of electron diffraction on a nickel 

crystal [1] 

 

On the other hand, as will be shown below, the negative results of calculations by the 

formula (3.9) D(n1) can mean that, when scattering microparticles on the thin films (i.e., for n1 

<12), part of the microparticles pass through the atomic lattice. 

In this article, the problem D(n1) < 0 has no final solution. A separate theoretical and 

experimental study should be devoted to this issue. 

5] Scattering of microparticles on a single crystal layer 

When scattering microparticles on one layer of the crystal (i.e., for n1 = 1), the calculation 

by the formula (3.9) leads to the result shown in Figure 17a,b. 

n1 

D(n1) 



               

                              a) n1 = 1,  ϑ = 450,  γ = 00,                                                            b) n1 = 1,  ϑ = 450,  γ = 00,   

                                                    l1 =10–11cm,  rcor5= 6·10–9cm                                                                   l1 =10–8 cm,  rcor5= 6×10–9cm 

 

Fig. 17 Diagrams of elastic scattering of microparticles (DESM) on one layer of the crystal                 

(n1 = 1), calculated by the formula (3.9) for various l1 

            

If the thickness of the first layer is l1 =10–11cm, then the calculation result by the formula 

(3.9) is negative (Figure 17a). This can be explained by the fact that microparticles do not reflect 

from this layer, but pass through it. If the first layer is thicker, for example, l1 =10–8 cm, then the 

reflection from such a layer (Figure 17b) is similar to the reflection from the top layer of an 

uneven surface with other statistics of the height of irregularities (Figures 7 through 10).  

An interesting calculation results using the formula (3.9) is observed for n1 = 1 and                          

l1= 4×10–10cm (Figure 18). This case can be interpreted as a prediction that part of the 

microparticles will reflect from one layer of the crystal, and the other part of the microparticles 

will pass through it. 

         

                   а) n1 = 1,  ϑ = 450,  γ = 00,                                                                  b) n1 = 1,  ϑ = 450,  γ = 00,   

                                       l1 = 4×10–10 cm,  rcor5 = 6·10–9cm                                                                l1 = 3.4×10–10cm,  rcor5 = 6×10–9cm 

       
Fig. 18 Diagram of elastic scattering of microparticles on one layer of the crystal, calculated by 

the formula (9.3) for n1 = 1, а) l1 = 4×10–10cm and b) l1 = 3.4×10–10cm 

 

6] Scattering of microparticles on two, three and four layers of the crystal  

Diagrams of elastic scattering of microparticles on two, three and four layers of the crystal, 

calculated by the formula (9.3), are shown in Figures 19 and 20. 



 

               a) n1 = 2,  ϑ = 450,  γ = 00,                                                                  b) n1 = 3,  ϑ = 450,  γ = 00,   

                               l1 =3×10–10cm,  rcor5= 6×10–9cm                                                                    l1 = 1,1×10–10cm,  rcor5= 6×10–9cm 

 

Fig. 19 DESM on two (a) and three (b) layers of the crystal, calculated by the formula (3.9) 

     

                                                                                                                                                  

Fig. 20 Two angles of the DESM on four layers of the crystal, calculated by the formula (3.9) for 

n1 = 4,  ϑ = 450,  γ = 00,   l1 =1,2×10–10cm,  rcor5 = 9×10–9cm 

 

7] The fifth parameter γ 

As shown above, by selecting four parameters: 

 
                                                                     H’       V        H           I  

                                                                  ϑ,     l1,    n1,   rcor5  

it is possible to achieve that the calculations by the formula (3.9) correspond to different 

diffraction patterns of microparticles on a multilayer statistically uneven surface of the crystal.  

The fifth parameter (quintessence from lat. quīnta essentia “fifth essence”) is the angle γ 

(see Figures 3 and 5), in all the previously considered cases it remained equal to zero (γ = 0o). 

          

                 a) n1 = 66,  ϑ = 450,  γ = 350,                                                        b) n1 = 66,  ϑ = 450,  γ = 550,   

                                 l1 =10–11см,  rcor5 = 6×10–9см                                                                    l1 = 10–11см,  rcor5 = 6×10–9см 



                                    

                      c) n1 = 66,  ϑ = 450,  γ = 800,                                                         d) n1 = 66,  ϑ = 450,  γ = 1550, 
                          l1 =10–11см,  rcor5 = 6×10–9см                                                            l1 = 10–11см,  rcor5 = 6×10–9см 

 

Fig. 21 DESM on a crystal, calculated by the formula (3.9), for the identical ϑ, n1, l1, rcor5 and 

different angles γ 

 

When deriving the formula (3.9), it was taken into account that all azimuthal cross-sections 

in different directions of a homogeneous and isotropic uneven surface of the crystal are the same. 

Therefore, it was expected that when the azimuthal angle γ changes, the scattering diagram should 

remain unchanged, and only its azimuthal direction should change. From the diagrams shown in 

Figure 21a,b, it can be seen that for small angles γ equal to 350 and 550, only the azimuthal 

direction of the whole diagram shifts. But with a further increase in the angle γ, the scattering 

diagram changes significantly with the remaining four parameters ϑ, l1, n1, rcor5 unchanged (Figure 

21 c,d). 

At this stage of the study, it is difficult to 

establish whether this change is a drawback of the 

formula (3.9), or is it a reflection of reality that can 

be experimentally confirmed. 

It can be assumed that the DESM depends on 

the angle α between the projection of the azimuthal 

direction of motion of the incident microparticles on 

the XOY-plane and the direction of the rows of 

atoms in the crystal lattice (Figure 22). 

From Figure 22 can be seen that rotation of the plane of incidence of the microparticles at 

the angle α is accompanied by the effect of increasing the distance between the atoms of the 

crystal lattice, which are effectively involved in their scattering. This effect can be taken into 

account by increasing the correlation radius of the heights of the surface irregularities rcor5. The 

scattering diagrams at γ = 750 and enlarged in comparison with the previous case of rcor5 and l1 are 

shown in Figure 23. 

 

  

 
 

Fig. 22 Angle α between the projection of the 

azimuthal direction of motion of incident 

microparticles on the XOY-plane and the 

direction of the rows of atoms in the crystal 

lattice 

 



 

 

 

 

 

 

 

 

 

         a)  n1 = 66,  ϑ = 450,  γ = 750,                                     b)  n1 = 66,  ϑ = 450,  γ = 750, 
              l1 =10–11cm,  rcor5 = 6×10–8cm                                     l1 = 2,5×10–11cm,  rcor5 = 8×10–8cm 

 

  

Fig. 23 DESM calculated by the formula (3.9), at γ = 750 and increased rcor5 and l1 

 

These calculation results by the formula (3.9) are subject to experimental verification. If the 

distortions of the DESM due to a change in the angle γ are not experimentally confirmed, then this 

disadvantage can be compensated for by a change in the orientation of the reference frame. In 

many cases, the coordinate axis from which the angle γ is measured can be initially combined with 

the azimuthal direction of motion of the microparticles incident on the crystal surface. That is, in a 

number of experiments, taking advantage of the arbitrariness in choosing a reference frame, it is 

possible from the very beginning to achieve that γ = 00. 

 

8] Diffraction of microparticles on thin films 

The DESM calculation procedure presented in §2.1 and §2.5 was developed on the basis that 

microparticles, after a collision with a solid surface, are reflected from it according to the laws of 

geometric optics, and do not pass through this body. But it turned out that the formula (3.9) makes 

it possible to calculate the scattering diagram when microparticles pass through thin films.            

Figure 24 shows the scattering diagrams of microparticles on thin films consisting of 14 and 15 

layers of the crystal lattice. 

Diffraction maxima are obtained when microparticles fall on thin films at angles ϑ from 250 

to 650. In this case, some of the microparticles are reflected from the uneven layers (i.e., atoms) of 

the thin film, and the other part passes through them. 

 

 

 



 

 

 

 

 

 

 

 

 

a) n1 = 14,  ϑ = 450,  γ = 0,                                             b) n1 = 15,  ϑ = 450,  γ = 0, 

                                        l1 =10–11
cm,  rcor5 = 9×10–9cm                                            l1 = 2×10–11

cm,  rcor5 = 9×10–9cm 

 

Fig. 24 Diffraction maxima of microparticles passing through thin films calculated by the formula 

(3.9) 

 

When microparticles fall vertically on the surface (i.e., at ϑ = 900), calculations using the 

formula (3.9) lead to absurd results. In other words, the method of calculating DESM proposed in 

this article does not apply to this case. It should be noted that diffraction maxima are obtained 

when microparticles fall on thin films at angles ϑ from 250 to 650. In this case, some of the 

microparticles are reflected from the uneven layers (i.e., atoms) of the thin film, and the other part 

passes through them. 

 

9] Overall remarks 

Summarizing this section, we note that the formula (3.9) [or in another form (3.10)] opens 

up wide opportunities for studying the properties of solid materials by analyzing the results of 

scattering of microparticles on them.  

By selecting five parameters ϑ, l1, n1, rcor5 and γ, which are associated with some properties 

of the atomic or molecular structure of a solid, one can achieve a similarity of the scattering 

diagram calculated by the formula (3.9) with an electron diffraction or X-ray, and thereby obtain 

information about the structure of this body. 

In general, the formula (9.3) with the five parameters ϑ, l1, n1, rcor5 and γ generates an 

infinite set of two-dimensional surfaces in which individual forms can exist that reflect the 

outlines or essence of processes in the surrounding reality. However, all these surfaces have the 

following common property. Since the formula (3.9) is the one-dimensional probability density 

function (OPDF) ( ) ( )  GD ,/,,/, = , the total area of all these surfaces is equal to one 

(3.14). 



The formula (3.9) is suitable for describing elastic diffraction not only of elementary 

particles, atoms, and photons, but also for scattering macroscopic elastic bodies (such as soccer 

balls or tennis balls) on large multi-layer periodic structures. Let, for example, a three-dimensional 

grid with the edge length of one cubic cell of 3400 cm = 34 m be assembled from metal pipes with 

a diameter of 30 through 50 cm, whereby metal balls with a diameter of 50 to 80 cm are placed in 

the nodes of this grid (see Figure 25). 

 

 

 

 

 

 

 

 

Fig. 25 Cubic lattice consisting of metal pipes and balls of different diameters 

 

If a stream of soccer balls with a diameter of 22.3 cm is directed at an angle ϑ = 450 at such a 

cubic lattice, then their scattering is also described by the formula (3.9). Indeed, if instead of             

l1 = 10–11cm, rcor5 = 6×10–9 cm and n1 = 66, substitute l1 = 50 см, rcor5 = 3400 cm and n1 = 18 in the 

scale parameter η (3.11), then the diagram of elastic scattering of soccer balls on such a cubic 

lattice, calculated by the formula (3.9), will be approximately the same as shown in Figure 11a. 

If the case of diffraction of soccer balls is confirmed experimentally, then we can argue that 

the formula (3.9) turned out to be universal with respect to the different scales of the events 

studied, and the phenomena of the microworld are indistinguishable from the phenomena of the 

macrocosm (under similar conditions). 

It is possible to pose the inverse problem of simulating processes occurring in the micro-

world using similar processes of the macrocosm. This will allow a more detailed understanding of 

the essence of microscopic phenomena. 

 

4 Summary 

The following results are obtained in this article. 

4.1 Method for calculating elastic scattering diagrams of microparticles 

In §§2.1 through 2.5, a method has been developed for calculating volumetric DESM on 

statistically uneven surfaces with various statistics of the height of irregularities. This method is 



applicable for describing the scattering of elastic particles and waves (photons and phonons), 

under the conditions of the Kirchhoff approximation: 

- irregularities of the reflecting surface are statistically uniform, smooth and large-scale in 

comparison with the sizes of microparticles (their radius or wavelength); 

- reflection of microparticles from all local sections of an uneven surface occurs according to 

the laws of geometric optics. For brevity, such a reflection of microparticles in the article is called 

"elastic"; 

- the section of the uneven reflecting surface is at a great distance from the generator and 

detector of the microparticles (see Figure 2). 

In this work, attention is focused on the scattering of elementary particles (in particular, 

electrons and high-frequency photons). However, the article suggests that the proposed method is 

suitable for describing elastic scattering of large-scale bodies as well (for example, soccer or 

tennis balls), if the above conditions are met. In other words, it is assumed that there are no 

fundamental differences between the diffraction of particles of the microworld and compact elastic 

bodies of the macroworld under similar conditions. 

 

4.2 OPDF derivative of a stationary random process 

Based on the procedure (2.29) through (2.32) given in [34, 35], in this article, we obtained: 

1) an OPDF of the derivative of a Gaussian stationary random process (SRP) (2.40); 

2) an OPDF derivative of the SRP with a uniform distribution of the heights of irregularities 

(2.51); 

3) an OPDF derivative of the SRP with the Laplace distribution of the height of irregularities 

(2.65); 

4) an OPDF derivative of the SRP with the distribution of the height of irregularities according 

to the Cauchy law (2.67); 

 5) an OPDF derivative of the SRP with the distribution of the heights of the irregularities 

according to the multilayer sinusoidal law (2.76). 

The obtained OPDF ρ[ (r)] of derivatives of various SRP can be of interest for many 

branches of statistical physics. For example, since the momentum of a particle moving in the 

direction of the x-axis is related to the derivative of its coordinate by the ratio 

                                        px = mvx = mdx/dt = mx,  

the procedure (2.29) through (2.32) essentially means a transition from the coordinate a real 

representation of the statistical system, to its impulsive representation, with all the many 

consequences arising from this. 

 



4.3 Volumetric diagrams of elastic scattering of microparticles on a single layer uneven 

surface 

Based on the method described in §§ 2.1 through 2.5 and the OPDF of derivatives of stationary 

random processes obtained in §2.6, the following formulas are derived for calculating the elastic 

scattering diagrams of microparticles on single-layer, large-scale uneven surfaces: 

1) a formula for calculating DESM D(ν,ω/ϑ,γ) on a single-layer surface with Gaussian 

distribution of the heights of irregularities (3.3); 

2) a formula for calculating DESM D(ν,ω/ϑ,γ) on a single-layer surface with a uniform 

distribution of the heights of irregularities (3.4); 

3) a formula for calculating DESM D(ν,ω/ϑ,γ) on a single-layer surface with a Laplace 

distribution of the heights of irregularities (3.5); 

4) a formula for calculating DESM D(ν,ω/ϑ,γ) on a single-layer surface with the 

distribution of the heights of irregularities according to Cauchy's law (3.6). 

Due to limitations imposed on the length of the paper, there is no detailed comparison of 

volumetric DESM calculated by the formulas (3.3) through (3.6) with experimental data. 

However, we note that in some cases the obtained DESMs are in good agreement with 

experiments (under the conditions of the Kirchhoff approximation) described in the extensive 

literature on the scattering of waves and particles on statistically uneven surfaces [17 through 27]. 

For example, Figure 26 compares the DESM calculated by formula (3.5) with the experimentally 

obtained diagram of neutron scattering on a single crystal CsHSeO4 [36]. 

 

 

 

 

 

 

 

 

 

 

                                 a)                                                                          b) 

Fig. 26 a) The diffraction maximum of the neutron intensity reflected from the single crystal 

CsHSeO4 [36]; b) Volumetric DESM, calculated by formula (3.5) for the case of the Laplace 

distribution of the heights of irregularities of reflecting surface, for ϑ = 600, γ = 00, L = 7, rcor3 = 5 

 

 



4.4 The volumetric diagrams of elastic scattering of microparticles on a multilayer uneven 

surface 

On the basis of the method described in §§ 2.1 through 2.6, and the OPDF of the derivative of a 

multilayer sinusoidal stationary random process (2.76), in this paper we obtained the formula (3.9) 

for calculating the DESM on large-scale (compared to microparticles) irregularities of the 

multilayer surface of crystal. 

By selecting the five parameters ϑ, l1, n1, rcor5 and γ included in the equation (3.9), it is 

possible to achieve similarity of the scattering diagram of microparticles on the multilayer surface 

of the crystal calculated using this formula with experimentally obtained electron diffraction 

patterns (Figures 23, 24) or radiographs. 

 

 

 

                                                                                    

 

 

 

 

                                      a)                                                  b) 

 

Fig. 27 a) The volumetric diagram of the elastic scattering of microparticles on the multilayer 

surface of a crystal, calculated by the formula (3.9), for ϑ = 450, γ = 00,  n1 = 64,  l1=10–11cm,               

rcor5= 6×10–9cm; b) Experimentally obtained electron diffraction pattern with a dark spot in the 

middle. Photo taken from a source that is freely available on the Internet. 

 

 

                                        

                                     a)                                                      b) 

Fig. 28 a) The volumetric diagram of the elastic scattering of microparticles on the multilayer 

surface of a crystal, calculated by the formula (3.9), for ϑ = 450, γ = 00,  n1 = 46  l1=10–11cm,               

rcor5= 1.4×10–9cm; b) Experimentally obtained electron diffraction pattern with a dark spot in the 

middle. Photo taken from a source that is freely available on the Internet. 



 

Once again, we note that these results were obtained without using the idea of Louis de 

Broglie on the wave properties of elementary particles. 

 

5 Conclusions 

The article presents formulas for calculating the volumetric diagrams of elastic scattering of 

microparticles (DESM) (fermions and bosons) on uneven single-layer and multilayer surfaces with 

different statistics of the height of irregularities, when the conditions of the Kirchhoff 

approximation are met. At the same time, the one-dimensional probability density functions 

(OPDF) of the derivative of various stationary random processes are obtained, which can be used 

in a number of other problems of statistical physics. 

In addition to solving the above practical problems, this article is aimed at introducing 

rational clarity into the conceptual problem associated with discussing the idea of the possible     

"existence" of de Broglie waves. The laws of geometric optics and the probabilistic methods of 

statistical physics applied here, according to the author, have allowed an explanation of the 

diffraction of elementary particles and atoms by crystals without using this hypothesis of Louis de 

Broglie about matter-waves. Moreover, this paper suggests that the phenomenon of particle 

diffraction on solid periodic structures can occur not only in the microcosm, but also in the 

macrocosm under similar conditions. 
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Appendix 1 

 

The reflection of a plane electromagnetic wave  

from a square surface area 

 
Let the length of a plane monochromatic electromagnetic wave λ be much less than the 

characteristic dimensions of the surface irregularities of a solid or liquid substance conducting 

electric current (i.e., λ « rcor, where rcor is the autocorrelation radius of the heights of the bumps in 

the reflecting surface). In this case, the uneven surface can be divided into many flat square 



sections (facets). Consider the reflection of the rays of the electromagnetic wave from each facet 

separately (Figure A.1.1 a,b). 

 

       
                                                                     a) 

                       
                                                                   b)  

Fig. A.1.1 Scattering of an electromagnetic wave on a surface approximated by smooth square 

sections (facets). a) The maximum of the main lobe of the scattering diagram of each facet is 

directed according to the laws of geometric optics: lies in the plane of incidence and the angle of 

reflection is equal to the angle of incidence; b) Only the main lobes of the scattering diagrams 

whose facets are oriented accordingly are directed towards the receiver antenna 

 

The beam of an electromagnetic wave here refers to a cylinder whose axis connects the 

source of the electromagnetic wave to the center of the reflecting facet, and the diameter of the 

base of this cylinder approximately coincides with the size of one of the sides of the bn square 

facet. 

We define the scattering diagram of a flat monochromatic electromagnetic wave (EMW) on 

a single facet that perfectly conducts an electric current. Let's assume that the radiation point 

(emitter, Fig. A.1.1b) and the observation point (receiver) are located at a great distance from the 

facet (i.e. bn « r2 and bn « r4), so that the EMW rays incident on the facet and reflected from the 

facet can be considered almost parallel. In this case, the signal sent from any point on the square 

facet to the receiver antenna has the form 
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(A.1.1) 

where x and y determine the coordinates of each point on the square facet; 

 Em is the amplitude of the monochromatic electromagnetic field near the emitter; 

Transmitte

r 

Receiver 



 r1 is the distance from the source of EMW to the center of the facet (Figure A.1.1b); 

 r2 is the distance from the center of the facet to the antenna of the receiver (Figure A.1.1b); 

 ω1 is the oscillation frequency of a monochromatic electromagnetic wave; 

 ϑ, γ are angles that specify the direction of the EMW ray incident on the facet (Figure A.1.2); 

 ν, ω are the angles that specify the direction of the EMW ray reflected from the facet. 

                                  

 

Fig. A.1.2 Angles ϑ, γ determine the direction of the EMW ray incident on the facet; 

                  angles ν, ω determine the direction of the EMW ray reflected from the facet 
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(А.1.2) 

The first and second multipliers in the expression (A.1.2), squared, is the desired power 

scattering diagram of a flat, monochromatic EMW from a perfectly conducting square sections of 

the surface (facets) 
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(A.1.3)

 
The scattering diagrams calculated using the formula (A.1.3) are shown in Figure A.1.3 (see 

Appendix 12) 



 

    

 

 

 

 

 

 

 

Fig. A.1.3. Power scattering diagrams of a flat, monochromatic EMW from a perfectly conducting 

square sections of the surface (facets). The calculations are performed according to the formula 

(A.1.3) using the MathCad software 

 

The cross section of the scattering diagram (A.1.3) in the plane of incidence and reflection 

of the EMW beam shown in Figure A.1.4. 

                                

Fig. A.1.4 Cross section of the scattering diagram of a beam flat electromagnetic wave from a flat 

square surface area (facet) conducting an electric current 

 

From the scattering diagrams (DR) shown in Fig. A.1.3, it is seen that with an increase in the 

ratio bn / λ, the main lobe of the DR becomes thinner and elongates, and the side lobes disappear. 

For large bn with respect to λ (i.e., when bn / λ → ∞), the scattering diagram (A.1.3) degenerates 

into a delta function, i.e. the EMW beam reflected by the large facet becomes infinitely thin. In 

this case, the laws of reflection of a light ray from a facet (i.e., the laws of geometric optics) 

completely coincide with the laws of elastic reflection of particles from a solid surface under 

similar conditions (i.e., when the particles are much smaller than the dimensions of a solid 

surface). 

In other words, in this case, the behavior of the light beam completely corresponds to the 

behavior of the particle (which can be called a photon). A photon is reflected almost lossless from 

a "mirror" surface according to the laws of geometric optics, just as elastic electrons or protons are 

           

 
  a)  ϑ = 450,  γ = 00,  bn / λ = 3 

 

        
      b)  ϑ = 450,  γ = 00,  bn / λ = 50 

 



reflected from a solid surface. Energy losses due to heating of the reflecting surface during 

collisions with particles and other secondary effects are not taken into account in the model under 

consideration. 

Therefore, in this article, microparticles are any particles: fermions (e.g., electrons) and 

bosons (e.g., photons), whose sizes are much smaller than the characteristic irregularities of the 

reflecting surface (Kirchhoff approximation), and reflected from this surface according to the laws 

of geometric optics. 

All conclusions made in this article relate to both elastic particles and electromagnetic 

radiation (light) rays, under the above conditions. 

In connection with the foregoing, all conclusions made in this article relate to both elastic 

particles and EMW (light) rays, if the above conditions are met. 

 

 

Appendix 2 

                                    The Calculation of Integrals  
 

Calculate the integrals (2.73) 
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We start with the integral (A.2.1), and use the formula 
i
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in the form 
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Let's perform the following transformations 
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As a result of these transformations, we obtain
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(A.2.4)         

Let's calculate the first integral in (A.2.4)                                                                    
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As a result of these calculations, we obtain
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           Let's calculate the second integral in (A.2.4)                                                 
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As a result of these calculations, we obtain
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(A.2.6)         

Substituting (A.2.5) and (A.2.6) and (A.2.4), we have                                        
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Let's do the transformations                                                
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Finally we get the result of integration (A.2.1)                                    
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(A.2.7)        

 
Similarly, we take the integral (A.2.2)
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Let's represent (A.2.2) in the form
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As a result of these transformations, we obtain
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We calculate the first integral in (A.2.8)                                            
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We calculate the second integral in (A.2.8)    
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Substituting (A.2.5) and (A.2.6) and (A.2.4), we have                      
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Let's do the transformations                           
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Finally, we obtain the result of integration (A.2.2)                        
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So, the results of taking the integrals (A.2.1) and (A.2.2) are the expressions (A.2.7) and  

(A.2.11):       
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                                                                                                            Appendix 3 

                                            

                                    The product of factors  

 

Product of expressions (2.74) and (2.75) {or (A.2.12) and (A.2.13)}                           
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equally 
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(A.3.3)        

 Opening large brackets, we multiply the terms in pairs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Add the resulting expressions 
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Rearranging terms and summing up them, we get  
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Performing calculations 
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Let’s regroup the terms 
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Let’s substitute the terms (A.3.5) and (A.3.6) into (A.3.4), we obtain 
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Now insert (A.3.7) into (A.3.3)
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(A.3.8)        

 We use two trigonometric formulas 
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In view of (A.3.10) and (A.3.11), the expression (A.3.8) takes the form
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Performing simplifications

            

( )


















+

−+
−







 

−








−
=

2

21

21

22

2

1

211

2

2 //

]1)/[cos(4)]/cos()cos([cos4

4

1
)(













ln

ln

l
n

lnn

l
p

 

 

finally get 
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7 Abbreviations and Definitions 

DESM is diagram of elastic scattering of microparticles; 

EDP is electron diffraction pattern;  

OPDF is one-dimensional probability density function; 

SD is standard deviation; 

SRP is stationary random process; 

TPDF is two-dimensional (or joint) probability density function. 

Microparticle is a solid elastic compact body or a ray of light (i.e., a photon) whose size or 

wavelength is much smaller than the characteristic size of the irregularities of the reflecting 

surface, upon collision with which they are reflected according to the laws of geometric optics 

(see §1). 

Elastic scattering is the reflection of a particle from a surface according to the laws of geometric 

optics (see Figures 3, 4): 1) The reflection of an elastic particle from a solid surface occurs in the 

plane of its incidence; 2) The angle of reflection Q2 is equal to the angle of incidence Q1. 
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