6 «Electron» motion. «Vacuum electrodynamics»

In this chapter the motion of stable vacuum formations in the «vacuumy (i.e. in the continuous
"medium”, of which they themselves consist) is considered the development of the fully geometrized
"vacuum electrodynamics" is continued.

6.1 Introduction

In the previous Chapters 1 through 5 we’ve considered the metric-dynamic models of practical-
ly all of the basic «particles» and «antiparticles» form the Standard model (besides «neutrino» and
Higgs bosons). In particular, the proposed metric-dynamic models: of the «electrons» and «positronsy,
«protons» and «antiprotonsy», «neutrons» and «antineutrons», «quarks» and «antiquarians» of all kinds
and generations, etc.

The names of «particles» are in brackets, since in the framework of the Algebra of Signatures
(Alsigna) each elementary «particle» occupies the whole Universe. But each of these «particles» can
be divided into four main parts: 1) outer shell, 2) rakya, 3) core, and 4) particelle (inner nucleolus) (see
Figure 5.10.5).

All of the above «particles» were considered in Chapters 1 through 5 as stable or unstable
spherical-symmetric deformations of «vacuumy», which are at relative to this «vacuum» (i.e. empty
continuous 3-dimensional extent).

In this paper, we investigate the rectilinear and uniform motion of «electron» and «positron» in
«vacuumy» (i.e. in "3-dimensional empty extent", the stable curvatures of which they are). This lays the
foundations not only for the dynamics of the cores of these «particles», but also of the dynamics of in-

tra-vacuum currents in the outer shell surrounding these cores.

6.2 Outer shell of resting «electron» or «positron»
Recall that the simplest metric-dynamic model of the outer shell of an «electrony» resting rela-
tive to the «vacuumy» (the deformation of which it is), in Alsigna is determined by a set of four metrics
(5.8.2) through (5.8.5):

The outer shell of resting «electron»
in the interval [rs ~10"" cm, 73~10"® cm] with signature (—+ + +)

2 2
dst™ % = 1_r_6+r_2 c2dr? o —rz(d@2 +sin’ quoz)’ (6.2.1)
r I"3 [ I"é I"ZJ
1 2
r I"3
2 2
s = 142 - |2 —d;z—rz(d@2 +sin’ 0de?); (6.2.2)
r 1”3 ( l"6 r J
I+——
r 1”3
2 2
ds{ ) = [1—”—6—”—2}%2 —Lz—rz(dez +sin’0de’ ) (6.2.3)
r r _ri_ r
[ r rszJ
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2 2
ds{ =(1+’i+”—2jc2dﬁ——d” ——2(d0> +sin* 0.dp® ) (6.2.4)
r 3 1+FL+L
r }"32

Similarly, the outer shell of a resting «positron» is characterized by a set of four metrics

(5.8.12) through (5.8.15):

The outer shell of resting «positron»

in the interval [rs ~107"° cm, r3~10"® cm] with signature (—+ + +)

2 2
ds % = _(1 T r_z}:zdzz o —+ rz(dQZ +sin’ Qd(pz)’ (6.2.5)
ron s
( r rfj
2 2
s =10l gty I 2 (497 4 sin® 0dg?)- (6.2.6)
ron 1 i_ﬁ
r ]"32
2 2
ds{H % =~ _r_6_r_2 c’dt’ +L+r2(d92 +sin’ ngoz)a (6.2.7)
roon _i_ﬁ
r ]"32
2 2
ds{ 7 = —[1+i+r—2]c2dt2 +L2+r2(d92 +sin’ 0dg” ) (6.2.8)
Ton 1+ 7
r ]"32

In the vicinity of the «electron’s» core (or «positron’s» core) rg/r3 ~ 1072/10" ~ 107", therefore
the terms 7°/r;” in metric sets (6.2.1) through (6.2.4) and (6.2.5) through (6.2.8) can be ignored. As a
result, we obtain more simplified metric-dynamic models of the outer shell of the resting «electron»

and resting «positron» {see (5.9.6) through (5.9.9) and (5.9.8) through (5.9.9)}

The outer shell of resting «electron»

in the interval [rs ~107"° cm, r5~10"® cm] with signature (- + + +)

ds( % = ds? = [1 —r—ﬁj&dﬂ A ap? —rrsin?0dg?  a-subcont;  (6.2.9)
e
2
ds$" % =ds{"? = (1 + rijczdtz __dr r’d6® —r’sin®0dep®  b-subcont. (6.2.10)

r
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The outer shell of resting «positron»

in the interval [r; ~10"" cm, r3~10"® cm] with signature (- + + +)

_ T dr?
ds T = s (02 < —(1 ——6}:261;2 i

/%

2
- 7, dr
dsy " = ds{? = —(1 + ijczdﬁ +
r

Recall the previously defined legend {see table 2.1.1}:

+ rz(dgz +sin? 9dg02) a-antisubcont; (6.2.11)

+r2(d0* +sin> 0 dp?) D-antisubcont.  (6.2.12)

Table 6.2.1
Layer of the 2°-,, ,-vacuum Code name Metric Formulae
with the
signature
The outer side of the external side of the a-subcont ds " (6.2.9)
2% A, ,-vacuum region (+——)
The inner side of the external side of the b-subcont ds"* (6.2.10)
2%, ,-vacuum region (+-—-)
The outer side of the internal side of the a-antisubcont ds ©” (6.2.11)
2% A, ,-vacuum region +++)
The inner side of the internal side of the b-antisubcont ds " (6.2.12)
2% A, ,-vacuum region (=+++)

Also recall that in Alsigna we consider 16 types of metric spaces described by metrics (5.71.35)
and (5.11.36) with signatures (5.11.33) through (5.11.34). So the next, more subtle level of considera-

tion should take into account the interweaving not of four, but of 16 x 4= 64 26—lm,n-vacuum under-

layers. In this case, the concepts of the model of intra-vacuum processes look much more complex

(Figure 6.2.1).

Fig. 6.2.1. Fractal illustration of complex sub-vacuum processes at the level of

2%- A,y i-vacuum region (see Definition 1.7.1)
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6.3 Outer shell of a moving «electron» or positron»

The experience of studying the translational motion of sta-
ble local disturbances in continuous media suggests that the outer
shell of a moving «electron» should rotate like a toroidal vortex in
a gas or in a liquid (Figure 6.3.1).

Therefore, in the considered approximation (6.2.9) through
(6.2.10) and (6.2.11) through (6.2.12), the rotation of the outer
shells of the «electron» and «positron» is described by the follow-

ing generalized Kerr metrics:

Fig. 6.3.1. The translational motion
of the toroidal vortex in a gaseous
or liquid medium

The outer shell of the moving «electron» (6.3.1)
in the interval [rs ~107"° cm, 75~10"® cm] with signature (— + + +)
2dy? rra 2r.ra
ds"”? = I—FLZ cdrf —% —p’d0* —| r* +a’ +———sin’ 0 |sin’ Odg’ + ———sin’ Odpcdt
P r —I"6V+Cl P
— a-subcont; (6.3.2)
2dy? rra’ 2r.ra
dsi"* = 1+FLZ c’dr’ —%—,ﬁdm —| 17 +a* ————sin’ 0 |sin’ Odg’ + ——sin’ Odgcdt
P r +I’6I"+Cl P
— b-subcont. (6.3.3)
The outer shell of the moving «positron» (6.3.4)
the interval [rs ~ 10" cm, 75 ~10"® cm] with signature (- + + +)
2dr* rra 2r.ra
ds? = 15" 2 __pdr —p2d0* —| r* +a* +—sin® 0 |sin’ Odg® + ———sin® Odpcdt
1 2 2 2 2 2
P r —l"6l"+Cl P
— a-antisubcont; (6.3.5)
2dy? rra’ 2r.ra
dsi"” = 1+FLZ cdt’ —% —p’d0* —| 1’ +a* ————sin’ 0 |sin’ Odg’ + ———sin’ Odgpcdt
P r +V6V+Cl P
— b-antisubcont, (6.3.6)
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were

pl=r?+dcos’0, (6.3.7)
14

a=r —= 6.3.8

65 (6.3.8)

— the ellipticity parameter of a «particle» («electron» or «positron») , moving at a constant speed V- (in
the direction of the axis z) as a single vacuum formation relative to the vacuum from which it consists.

The solution of the Einstein vacuum equation (2./.6) for a rotating body was discovered by
Kerr in 1963. However, the Kerr metric in the form of (6.3.2) was first given by Boyer and Lindquist
in 1967. As far as the author knows, there is no correct output of this metric in the literature. However,
the correct values are obtained by substitution of the metric tensor components from metrics (6.3.2)
through (6.3.3) and (6.3.5) through (6.3.6) into the Einstein vacuum equation (2.1.6). Metrics (6.3.3)
and (6.3.6) are obtained by replacing all r¢ in metrics (6.3.2) and (6.2.5) with — 7.

Vacuum formations, metric-dynamic models of which are given by metrics (6.2.2) through
(6.2.3) and (6.2.7) through (6.2.8), fully compensate each other's manifestations, as the sum of these
four metrics is zero, i.e. the "vacuum condition" is observed.

In the absence of translational motion «electron» or «positron» (i.e., V>= 0 and therefore a = 0)
metrics (6.3.2) through (6.3.3) and (6.3.5) through (6.3.6) are reduced respectively to metrics (6.2.9)
through (6.2.10) and (6.2.11) through (6.2.12).

6.4 The shape of the cores of a moving «electron» or «positron»

Let's define the shape of the core of the uniformly and rectilinearly moving «electron» based on
the form of rakya (i.e., the boundary or horizon of Schwarzschild, which separates the core from its
outer shell).

Similarly to (5.15.50), the form of a rakya of a moving «electron» can be found by equating the

components of the metric tensor gy from metrics (6.3.2) and (6.3.3) to zero

g =1-2L 1T _0 _for rakya (border) a-subcont;  (6.4.1)
o) r-+a cos 0
(=b) _ rel _ rel _
ooy =1+—5=1-———-"—5—=0 —for rakya (border) b-subcont. (6.4.2)
Io) r“+a cos 0

First, consider the equation (6.4.1), which can be represented as a quadratic trinomial
r’—rr+a’cos’@=0 (6.4.3)

with roots

2
reo 2oy [T _p2 00820, 6.4.4
s1,2 2 2 ( )
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or, taking into account (6.3.8)
17 Y (rV. Y
=54 18] —| 5= cos’ 6. (6.4.5)
’ 2 2 2c

Hence the desired expression to determine the shape of the two horizons of rakya (border) be-

tween the core of the moving «electron» and its a-subcont outer shell

2
o =”_6(1i,/1_ V- cos? 9). (6.4.6)
o 2 c

Similarly, there are the roots of the equation (6.4.2), which determine the forms of the two

rakya horizons between the core of the same «electron» and its b-subcont outer shell

2
riy) = %"(—li I—V—zcos2 9]. (6.4.7)

c

Graphs of functions (6.4.6) and (6.4.7) (with V./c = 1 and rs = 1) depending on the change of
the angle 6 shown in Figure 6.4.1.

sl

1 .
. -0 _ [ 2g| 2ndh f the a-
Fo :%(1 ++/1—1cos> 9) Ist horizon of the a-subcont r _5(1 —+1-1cos 9) nd horizon of the a-subcont

279



b = %(_1 +1—1cos 9) 1st horizon of the b-subcont roh = %(_1 ~_J1-1cos> 9) 2nd horizon of the b-subcont

I(w) 180

Fig. 6.4.1. Changing the shape of the 4 horizons of rakya surrounding the core of a moving «electrony.
The calculations are performed in V, /c = 1 and r¢ = 1 using the MathCad software

From the expressions (6.4.6) and (6.4.7) can be seen:

— at low speed of the «electron» (i.e. V2/c = 0), the spherical // il \\

form of the rakya, surrounding the core (and thus the core itself),
almost no change;

— at a large speed of the «electron» (i.e. V./c = 1), the rakya is

separated into four horizons, having the form of ellipsoids of rev-

olution. Two of these ellipsoidal horizons are flattened in the di-

rection of motion of the «electron» (i.e. along the axis z), and the

other two horizons are flattened in the perpendicular directions  The core

. Fig. 6.4.2. Tapered horizons of the
(Figure 6.4.2). «electron’s» (or «positron’sy) rakya,

The shape of the «positron’s» core can be investigated by =~ moving at a constant speed V- in the
direction of the axis z

found the zero components of the metric tensor ggo from metrics
(6.3.5) and (6.3.6)

r.r 134

gul =—1+-=-1+ =0 - for rakya (border) a-antisubcont; (6.4.8)

2 2 2
r“+a“cos 0

g =1l oy 5" 0 _for rakya (border) b-antisubcont.  (6.4.9)
r~+a“cos 0

Analyzing the expressions (6.4.8) through (6.4.9) we find the similar results as in the case of
the «electron’s» core (Figure 6.4.2), but shifted in phase by 90°.
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6.5 The scope of the a moving «electron» and «positron»

When r¢ = 0, metrics (6.3.2) and (6.3.3) and (6.3.5) and (6.3.6) become Galilean:

2 2
ds? = c2dit — LI 200> (1 +a?Jsin? 0 dg?, (6.5.1)
r-+a
2 2
ds™? = —cdr* + F’Z f; 4 pd0” +(r> +a’ Jsin> 0 do’. (6.5.2)

Indeed, the introduction of coordinates

x=,/r’+a’sinfcosg,
y=.r’+a’sinfsing, (6.5.3)

z=rcosf

leads metrics (6.5.1) and (6.5.2) to pseudo-Euclidean form
ds* = Fdf—dv* - dy*— d7, (6.5.4)
ds"?=—2df + dx* + dy + d7-. (6.5.5)

Thus the surface » = const represents the ellipsoids of rotation described by the equations

2 2 2
X ¥y z
rPta® rP+at ’ ( )
or
x2 y2 ZZ
A S (6.5.7)
7 7 r +a

therefore, the value a is called "ellipticity parameter".
Thus, the «scope» of linearly and uniformly moving «electron» and «positron» are given by the
metrics:

The scope of the a moving «electron»

moving at a constant speed V, 7 € [0, o], with the signature (+ ——-)
2 2
- dr .
a0 = c2art — LY 52492 (12 1 )sin® 0 dg?. (6.5.8)
r’+a

The scope of the a moving «positron»
moving at a constant speed V_, r € [0, ], with the signature (—+ + +)

2 2
dst? = —cd? +%+ p2d0” + (> + a*)sin® 0 do”. (6.5.9)
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6.6 Deformations of the outer shell of a moving «electron» and «positron»
We will evaluate the deformation of the outer shell of the «electron» moving at a constant
speed V, in the direction of the z axis by the relative elongation of the local areas of the outer side of

the 2°-A.11..16-vacuum region {see (2.1.32)}

=) _ 50) =)
11-(7) z\/1+gii 8ii _lz\/gii 1 (6.6.1)

0(-) 0(-)
gii gii

First, just like in § 2.2.1{see expressions (2.1.23) through (2.1.36)}, we find the arithmetic

mean of the metric tensor components from metrics (6.3.2) and (6.3.3)

N T
gy’ =5(g,€» Vg™, (6.6.2)

As a result of calculations by the formula (6.6.2) we obtain

I YA . 1 rr rr
géo)=—(géo)+géob))=5(1—%+ +%]=1,

2 p p
©) _l( -a) (—b))__l P P _ Pz(r 2+a2)
g =381 T8 )= 2 PN N N2 NG
2 2Q\(r —rr+a’) (r+rr+a’) (r" —rr+a ) +rr+a’)

g5 =%(g§£‘” +g)= —% (0% +p*)=—p",

1 1 ? sin’ rra’sin® 6 )| . .
g\ =5(g§;a) +g§;b))= - Krz +a’ +L82mg)+£r2 +a’ ———— ||sin* 0 =—{" +612)Sln2 0,
p p

) ) ,02 ,02 ,02

5 ¢ . 1(2 2 . 2 .
g(()3) :_(g((na) +g(()3b))=_(ﬂ ’ rﬁra]smz 0=""Tsin’ 0,
(6.6.3)
the remaining gjj(i) =0.
The components of the metric tensor gyo(*) describing the not curved (initial) state of the area in

question of the outer side of the 2°-1,, ,-vacuum region comes from the metric of the scope (6.5.8):

2
i =-b g =ph @ = asin . (6.6.4)

Substituting the components (6.6.3) and (6.6.4) into the expression for the relative lengthening

of the outer side 2°-A.11 .j¢-vacuum region (6.6.1), we obtain
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li_) :\/( (1”2 +a2)2 1, 0.4 T

r —1r +a’)(r’ +r6r+a2) -
(6.6.5)
{7 =0, I(r) 02 —
I =0.
The graph of the function (6.6.5) at ¢ = 1 and 0 I

-10 0 1
V-/c =0.007 is shown in Figure 6.6.1.
T

From other graphs of the same function (6.6.5) Fig. 6.6.1. The graph of the function (6.6.5)

L . . ) with 7g =1 and V./c = 0.007. The calculations
shown in Figure 6.6.2, we see that with an increase in the are performed using the MathCad software
speed of movement of the «electron» V., the radius of its

rakya (hence the size of its core) decreases.

[(*)
rA : : V:/e=0,49

I ' 1 :
1
1 1

10 : P
1 | 1
: i Vz Je=0,26
I ‘ 1
1 \
1
1 [
1 \1
! N

1
/ i E S Vile=0
~
/f ! ! S T /
Z 1 [ =l
0,5 I's I'¢ r

Fig. 6.6.2. Graphs of the function (6.6.5), i.e., the relative lengthening of the local sections of the outer
side 2°-241..16-vacuum region in the outer shell of the «electron» moving at a constant speed V,
at r¢=1 and various values of theratioa =V, /c

Deformations of the «positron’s» outer shell, which moves at a constant speed V- in the direc-
tion of the z axis, are determined by substituting the components of metric tensor g; **, g, and
g’ of the metric (6.3.5) through (6.3.6) and (6.5.9) in expressions of the form (6.6.1) and (6.6.2).
Calculations using these formulas lead to similar relative lengthening of the inner side of the same

232 1 -16-vacuum region (Figure 6.6.2).
6.7 Simplified metric-dynamic model of the moving
«electron» and the moving «positron»

Recall that in the framework of Alsigna «electron» is a stable "convex" deformation of the out-
er side of the 2° -A11-16-vacuum region (i.e. subcont, see Definition /.7.4 and table 6.2.1), a stationary

metric-dynamic state of which is described by a set of metrics (5.8.2) through (5.8.10).
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In turn, the «positron» is stable "concave" deformation of the inner side 2°-1.1; _j6-vacuum re-
gion (1.e. antisubcont, see Definition /.7.5 and table. 6.2.1), a stationary metric-dynamic state of which
is described by a set of metrics (5.8.12) through (5.8.20).

Taking into account the assumptions made in §§ 6.2 and 6.3, a simplified metric-dynamic mod-
el of an «electron» moving at a constant speed V- in the direction of the z axis as a single vacuum for-

mation with respect to the vacuum extent from which it consists itself is described by a set of metrics:

A moving «electron» (6.7.1)
with signature (+ ——-)

The outer shell of a moving «electron»
in the interval [r5 ~10"" cm, r3~10'® cm]

2dy? rra 2r,ra
ds " =[1—r%jc2dz2 P e | e d® + it 0 fsin 0dg? + O sint Odped
p r-—rir+a P o,
— a-subcont; (6.7.2)

2dr? rra’ 2r.ra
ds{? :(1+rf’—:]czdt2_%— p2d92—(1”2+a2— ©——sin’ 9]sin29d¢2+ “—sin’ Odgcdt
Jo) re+rr+a Joj Joj

— b-subcont. (6.7.3)

The core of a moving «electron»
in the interval [rg ~10**cm, r5~10" cm]
2

2dr? rra 2rra
dsr"ﬂ=(1—r7—2]c2dt2—%—p2d92—(r2+a2+ T sinZQ]sin29d(p2+ " sin® Odpcd
P r—rr+a Jo,
— a-subcont; (6.7.4)
: 2r,r

2dr’ rra a
dsS” =(1+i};]c2dtz—&2— p2d92—(r2+a2— 7 sin? 9]sin29d(p2+ —sin® Odgcd

p ¥ +rr+a o

— b-subcont. (6.7.5)

The scope of a moving «electron»
in the interval [0, o]

252
] dsg_)2 T dr2 —p?do? —(r2 +a2)sin29d(02. (6.7.6)
re+a
V
where p?=r?+a*cos’0; a= T 2—2 — the parameter of ellipticity; (6.7.7)
c

re~ 1.7-107" cm is the radius of the core of the «electrony;
r7~5.8:10* cm is the radius of the internal particelle (i.e., the core of proto-quark) inside

the «electron’s» core.
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In this case, a simplified metric-dynamic model of «positron» moving at a constant speed V' in
the direction of the z axis as a single vacuum formation with respect to the “vacuum” from which it

consists itself is described by a set of metrics:

A moving «positron» (6.7.8)
with signature (— ++ +)

The outer shell of a moving «positron»
in the interval [rs ~10"" cm, r5~10" cm)]

2

*dr? rra 2r.ra
dst? = 1-2 |2ar +% +p°d0 +| 1’ +a’ +-——sin’ @ |sin’ Odg” — ——sin’ Odpcdt
P r—rr+a P P
— a-antisubcont; (6.7.9)
2dr? rra’ 2rra
ds{™?? = {Hr"—l;}czdtz +% +p°do? +(r2 +a’ ————sin’ t9]sin2 0dg’ — —5—sin’ Odgpcdt
P ro+rr+a P
— b-antisubcont. (6.7.10)
The core of a moving «positron»
in the interval [rs ~102*cm, r3~10" cm]
dr? rrd 2rra
d o = 150 g+ LU a6 4] 2 vd+ T sind 0 |sin 0dg? — 2T st Odpedr
Jo, r—rr+a Jo,
— a-antisubcont; (6.7.11)
(+)2 LRy Pzdrz 2 102 2 2 ’”7’"‘12 ) ) 2 2nra 2
ds,”" =1+ |c’dt’ + ——5+p°dO0° +| r" +a" ————sin" 0 [sin” Odp” — ———sin" Odpcdt
P r +r6r+a P
— b-antisubcont. (6.7.12)
The scope of a moving «positron»
in the interval [0, o]
2 2
N d .
st =—c2di* + 254 p2d0* +(r* +a* Jsin’ 0 d’. (6.7.13)
r-+a
where p*=r?+ a’cos’0; a = r,—= —the parameter of ellipticity; (6.7.14)
c

re~ 1.7-107"% cm is the radius of the core of the «positrony;
r7~5.8:10* cm is the radius of the internal particelle (i.e., the antiproto-quark nucleus) inside
the «positron’s» core.

On the one hand, the ellipticity parameter a depends on the velocity of the «particle» as a single
vacuum formation moving relative to the "vacuum" from which it consists. On the other hand, distor-
tion (more precisely-flattening) of the spherical shape of the «particle» core by the value a inevitably
leads to the averaged rotation of the core around the selected direction (in particular with respect to the

z axis) (see § 6.12).
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6.8 Accelerated movement of the vacuum layer
Let’s consider the accelerated movement of the local areas of various layers of the 2°-A.;_16-
vacuum region in the vicinity of the core of a moving «particle» at the example of the moving «elec-
trony.
Constantly, uniformly and rectilinearly moving «electron» is a stationary object. That is, the
components of a metric tensor in metrics (6.7.2) through (6.7.7) describing its metric-dynamic state do

not change over time. Therefore, the acceleration vector (5.6.1)

2
51:c—z{—grad(ln\/g_oo)-ir%[‘jxx/g_mmtg]} (6.8.1)

v
I-=
C

is suitable to describe the dynamics of each vacuum layer in the vicinity of the core of the moving
«electrony.

This vector has components of (5.5.22)

_ 6'2 g 00 g ,B ag a
Ao = > (6.8.2)
1_L
2
C
To use these expressions we will need the following information:
1. The gradient of any scalar function G (x,,2)
grad G = 29,99 ;.96 (6.8.3)
ox oy 0z
in the curved coordinates of the Riemann space has the form [31]
oG
VG=eg’ — P (6.8.4)

where e; are the components of the unit vector (i, j, k);

g is the contravariant components of the metric tensor, which is defined by the expression [31]

g’ & (6.8.5)
s .8.
2.0 2 24P .2
where g=\g; =—(r +a“ cos 9) sin” 0 (6.8.6)

— the determinant; A, is the cofactor of the corresponding element of the matrix (g;).

2. The rotor of any vector F

_ (oF, OF,) (oF oF,). (OF, OF
rotF = - i+ - Jt —— |k (6.8.7)
oy 0z 0z 0x ox oy o

in curved coordinates it looks like [31]
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| DF, y_ 1 (OF, @R,
", (6.8.8)

T o

after summation become ¢* — components of the unit vector (i, j, k).

ox'  ox’
ik

where e

6.9 Accelerated currents of a-subcont in the outer shell of a moving «electron».
Basics of vacuum electrodynamics

Let’s apply a vector of the form (6.8.1) to determine the acceleration of an a-subcont in the

outer shell of a moving «electron»

2
gt =__¢ — {— grad (In\g\,*) +l[\7 X+ gV rot g“”]} (6.9.1)
ye ¢

1—

2
C

with components

2 (-a (-a)p
e {—a”’axvf"" T A } (692)

« V(—a)2
1- 2
c

where, gl =20 (6.9.3)

B B
Cap . dx dx

- . .
e (d v dx]
C

v

(6.9.4)

goo
— components of the 3-dimensional velocity vector of a local section of a-subcont;

v — velocity, which is determined similarly to (2.1.48) through (2.1.51) or (2.2.27) through (2.2.28)

by means of equating component go from metric (2.1.45) with component go,"® from metric (6.8.9)

pa? rr
-+ = l-——5%—— 6.9.5
[ c? j ( P +a’ cos29j ( )

rgr

whence it follows that
> +a*cos’ O (6.9.6)

The vector (6.8.1) can be represented as follows {see (5.6.1 through 5.6.7)}

2t = E,?+ [vE? x B,C], (6.9.7)

where

ag ™ — B, 9= —y grad( In/g$ ) (6.9.8)
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— the vector of laminar (straight-line) acceleration of the a-subcont (or the vector of a-subcont intensi-
ty E,°%);

» o =02, " 0 s
an " = v B, ) = 7 ghe” (~ - gaﬁ ) (6.9.9)

— the vector of turbulent (rotational) acceleration of the a-subcont (or the vector of a-subcont induc-
tion BO(*“)), and

y=—r— (6.9.10)

Vector components (6.9.8), taking into account (6.8.4), have the following form {see (5.6.6)}

Oln
aé‘}"a) Eél’_'a) = argoo B
dln /g
( a) _ g _ _ 00
[ o=@
E(p oQ a(p * 5

where —=g (6.9.12)

The components of the vector (6.9.9) with account (6.8.8) have the following form {see

(5.6.7)}:

(=a) (-a) - - (-a)
) _( 0 p(-a) _v(pB(—a)) _ 8w | o 0gy _8g£ X 0 og, ™ %y
o v v ¢ ot a0 op- o )|

—a) a) A (-a o)~ (-a
o =l i) TV o) Bo B | BT T
r ’ ¢ 00" o’ ot 00" (6.9.13)
Ca _(,rgea _opca)_7 goo” | [ o) a5 gy
aB(D =V BOQ BOV = c v a(o+ - ar+ v ae+ - a¢)+ 4
where @:LE’ 0 :;i’ 6+ :;i (6.9.14)
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Recall that the expression (6.9.7) is similar to the Lorentz force in classical electrodynamics
{see (5.6.4) through (5.6.5)}. But within Alsigna this expression describes not the motion of a charged
particle in some abstract electromagnetic field. In the case it describes the accelerated laminar and tur-
bulent flow (current) of subcont and antisubcont of the 2°-A,,,-vacuum region, which may induce

movement of the local vacuum formation just as the river carries the boat.

Let us write the components of the vector of a-subcont intensity E,"® and the components of
the vector of a-subcont induction B,

(—a) —a —a —a
EC® z_yéln— VE00 g _7 860" agc(o ) _581(9 :
or or * b or c 69+ a(p+ ?

L dln4/ g _ _
Eo” =1 g A [8g£“’ og “’J
06 T - ’

c op” or"

[ —a) ~ B

E(g(—pa) — —J/M; B(_a) _ 4 g(()Oa) 6gé %) _ 6g,(,_a)

op* , 0p - e et
.9.15
( ) (6.9.16)

We define the components of EO(’“) and BO(’“) vectors in the outer shell of an «electrony,
which is moving at a constant speed V.. To do this, we write a generalized Kerr metric (in Boyer —
Lindquist coordinates) (6.7.2) describing the metric-dynamic state of the a-subcont in the outer shell of
the moving «electron» in expanded form

2 2 2
) rr r"+a cos 0
ds™ = (1_6—}0261;2 - ar —(r2 +a’ cos’ 9)d92 -

r* +a’ cos’ 0 ¥ +a’—rr,

(6.9.17)

2 .2

r.ra-sin“ 0 | . 2r.ra )

—| P +d’ +—t——— |sin’ Odg’ + ——5———sin’ 0 dp cdt.
r“+a cos 0 r“+a cos 0

Substituting the components of the metric tensor g,_~,~(’“) from the metric (6.9.17) into the expres-

sion (6.8.5) and (6.8.6), we obtain contravariant components

(r2 +a’ )r’ +a’ cos’ 9)+r6 ra’ sin’ 0 0 0 r.ra
(r2 +a’ —rr()Xﬁ +a’ cos 9) (r2 +a’ —VI%XI"2 +a’ cos 9)
—\r*+d’ —rr())
. 0 2 2 0 0
g/ = r* +a’cos 6 |
0 0 —_— 0
r* +a’ cos 6
rora 0 0 —(r2 +a’ cos 9—rr6)

(r2 +a’ - Xr2 +a’ cos Q)Sin2 0

(r2 +a’ —rr()Xﬁ +a’ cos’ 9)
(6.9.18)
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Zero components of the metric tensor from the metric (6.9.17) are

22
o _|_ rr g(—a) :g(—a) -0, Ca) _ 2K rasin” 0 . 6.9.19
800 r+a*cod 0’ ! 2 8 S P cod ( )
Herewith, according to (6.9.3), we have
(a) O @ & gl 2r.rasin® 0
e U (6:9:20
200 260 ¢ g\ r’+a‘cos’O-rr
and, according to (6.9.5)
c’ c’ c’
—-a)2 -a
\/l v Jl_w N
- 2
c’ P

Substitute the covariant components of the metric tensor (6.9.19) and contravariant components
of the metric tensor (6.9.18) into expressions for the components of the vectors of a-subcont intensity
E," (6.9.15) and a-subcont induction B,"® (6.9.16).

As a result of calculations for the components of the vector a-subcont intensity E," (6.9.15),

taking into account (6.9.10) and (6.9.12), we obtain

oln (=a) 2 2 29 2,2 2 _
At =ECY =y \a/gio ___c ré(a cos“ O —r 3Xr +a rré) ’ (6.9.22)
r

2(1 - rér)z(rz +a’cos’ (9)3

r’+a’cos’6

(-a) -
S Olnygy" _ c’rrya’sin 20 (6.9.23)
EO 06 89* . ;( )3 i
21— |'(r’+a’cos’ 0
( r* +a’ cos’ 9]
» » dln ,/goaa)

0

Attention! The dimension of the component (6.9.23) is 1/sec’, different from the dimension of
the component (6.9.22) m/sec’.

Graphs of functions (6.9.22) and (6.9.23) when r ~ 10" ¢cm and V./c = 0.00098 shown in
Figure 6.9.1.
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1.27801930° |
Ex(0) Eo(6) o

1.2780192980°"

1.2780192966G"
- 0 b - 0 i

Fig. 6.9.1. Graphs of functions (6.9.22) and (6.9.33) with 7~ 10! cm and ¥z /c = 0.00098.
The calculations are done using the MathCad software

At a = 0, the expressions (6.9.22) through (6.9.24) coincide with the expressions (35.10.9) speci-
fying the components of the vector of a-subcont intensity in the outer shell of the resting «electrony.

When substituting (6.9.19) through (6.9.21) in (6.9.16) taking into account (6.8.6) and (6.8.8)

for the components of the vector a-subcont induction BO(’“) in the outer shell of the moving «electrony»

we obtain:
o _7 2" (02, ogl” _ 2crr, acos&(r2 +a’ - rér) (6.9.25)
T 2eylel L 90 Og (r2 +a’ cos’ G)I/Z(rz +a’ cos’ 0 — rér)z
o _Y 2o (887" ogy _ cr,a sin «9(a2 cos’ 6 —r2) (6.9.26)
° 2c\/g dp  or ( + > cos0)*(* +a* cos O—rr |

(—a —-a —-a

o _ 78" (@g’é ' dg} )]:0_ (6.9.27)
" el Lo o0

Attention! The dimension of the component (6.9.25) is m/sec, whereas the dimension of the

component (6.9.26) is 1/sec.

Substituting the components of the vector a-subcont induction B,"* (6.9.25) through (6.9.27)

into the expression for the component of the turbulent acceleration of an a-subcont in the outer shell of

the moving «electron» (6.9.13), we obtain
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W %cr.a sin 9(612 cos” 0 — rz)

1/2 2
(rz +a’ cos’ 0) (rz +a’ cos’ 0 —r(,r)

(-a) _ (—a)p p(-a) | _
aBr —(—V BOG )__

v 2c¢r, acos 9(r2 +a’— r(,r)

1/2 2
(rz +a’ cos’ 0) (rz +a’cos’ 0 — r(,r)

(=a) _ (,,(-a)¢ p(-a) | _
Apg —(V Bor )__

(6.9.28)

v cr.a sin 9(612 cos” 0 — rz)

1/2 2
(rz +a’ cos’ 0) (rz +a’cos’ 0 — r(,r)

(-a) _ (,(~a)r p(-a) _ 0(-a) p(-a) | _
g, —(v B, —v B, )—

vV 2¢ra cost9(r2 +a’ - r(,r)

+ 2 2 2 p\V2(.2 2 2 2
(r +a” cos 0) (r +a” cos 0—r6r)

2

where v is defined by the expression of the form (6.9.4).

The graph of the second component (6.9.28) is given in Figure 6.9.2.

5-10 / \/ \
AL(0) 0
-5.10 '* :
-TC 0 TC
0

Fig. 6.9.2. Schedule the second components of (9.28) with » ~ 9 cm,
V./c=0.087 and v# =1m/s. The calculations are performed using MathCad software

Together, the expressions (6.9.22) through (6.9.28) define the vector field of laminar and turbu-

lent accelerations of the a-subcont in the outer shell of the «electron» moving with the speed V- in the

direction of the z-axis.

However, these expressions define the basis of "a-subcont electrodynamics”, in which the in-

tensity and induction of the vacuum layer is a set of vector fields that determine the direction of accel-

erated currents of a-subcont (i.e., the outer side of the external side of the 2°-1,, ,-vacuum region, see

table 6.2.1) in the outer shell of the moving «electrony.
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6.10 Accelerated currents of the b-subcont in the outer shell of a moving «electron»
The behavior of b-subcont (i.e., the inner side of the external side of 23 -Amp-vacuum region, see
table. 6.2.1) in the outer shell of the moving «electron» is described by the second generalized Kerr

metric (6.3.3)

2 2 2
_ rr r“+a cos 0
dsl( b)2 — (1 +6—jczdt2 ——dl/'z —(7’2 +a2 COS2 9)d92 -

¥’ +a’cos’ 0 PP +a’ +r
(6.10.1)
2 2
s o, Irasm O | ., ) 2rgra .
—|r"+a ——=2————Isin“O0dp" + ———2———sin“ 0 do cdt.
( * +a’ cos’ 9} ¢  +a’cos’ 6 ¢
In this case, the zero components go,H’) of the metric tensor have the form
_ _ 2r.rasin’ @
h _14 e g( b) :g( b ), b e 7 6.10.2
Eoo P2idtcoso’ TV 02 Eos r +a’cos’ 0 ( )
Herewith
D) D) - .

b __ 801 _ b __802 _ o & 2rrasint 0

I R (6.10.3)
200 200 200 P +a* cod O+ryr
cZ cZ cZ
y = =7 R (6.10.4)
\/1 _ Vr \/1 + K \/gOO
2 2
c P

Contravariant components of the metric tensor in this case have the form

(r2 +a2Xr2 +a’ cos 9)_’% rd sin’ 0 rra

0 0

(r2 +a +rr sz +a’ cos 9) (r2 +a +r sz +d’ coS 9)

—(r2 +a +’”V6)

0 0 0
g — ¥ +a’cos 6 |
0 0 — 0
¥ +a’ cos 6
rra —(r2 +a’ cos 9+r1g)

(7 +d +r7;|i? +d cos ) (7 + +r7; )i +d cos O)sir? 0
(6.10.5)
Similar to the previous paragraph, we use expressions (6.10.2) through (6.10.5) to define the
components of the EOH’) and BOH’) vectors.
As a result of calculations for the outer shell of a moving «electron», we obtain:

— components of the vector b-subcont of the intensity E,:
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ay” =E," = yalﬂ o _ 02”6(‘120052‘9_”2X”2+a2+””6) ’ (6.10.6)

or* 3
1934 2( 5 2 2
2(1+1fz+agcoszq9] (r +a” cos «9)3

Olnq/g!” c’rra’ sin20
" =By ==y —— = = : (6.10.7)
rr 2
21+——%  |'(F*+da’cos’ 0
[ r* +a’cos’ 0] ( )J
Oln A g\?
alP =B =—y STNEw g, (6.10.8)
op
— components of the vector h-subcont of the induction BOH’):
o _Y gl 88( " 8g( %) _ 2crr6ac059(r2 +a? +r6r) (6.10.9)
" 2c |g| o0 op (rz +a’ cos’ 9)”2(r2 +a’cos’ 0+ rér)2
BCY - ey 08" og.” _ cra sin¢9(a2 cos’ 9—r2) (6.10.10)
’ 2c\/g odp  or (r2 +a’ cos’ 9)]/2(r2 +a’cos’ 0+ rér)z

(=b) (=b)
PRalty (Qg % ]_o. (6.10.11)

o 20\/ﬂ or 00

Let's substitute the components of the vector of the b-subcont induction B, (6.10.9) through

(6.10.11) into the expressions for the components of turbulent (rotational) acceleration of the

b-subcont

(-b) (-b) b b (~b)

al, b)—( eB(‘m—vq)B(j’)) 8w | of 2 g 0 ogi " ag, ’
' " ’ ¢ ot o0 oot ot
(-b) (-b) (-b) (-b) (=b)

aS =2 BGD .y pep) = TVEW o| %80 O |_ (%" & |

. 0 ¢ 00" g ot 00" (6.10.12)

(=b) —b (-b) (=b) —b

al? =(v’B(5b) —veB(_b)) AL ag( : %y o| By ag( : ,
’ ’ ” c dp" ot E

As a result we have:
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(=b)p . 2 2 2
a(,b) — (_ v(,b)(/)B(,b)) - v C 1"661 s Q(Q COS 8 —-r )
Br 00 2 2

1/2
(rz +a’ cos’ 0) (rz +a’ cos’ 0+ r6r)

v a cos@(r2 +ad*+ r6r)

(-b) _ (,(-D)e p(-b) ) _
Apo _(v B, )__ s 2 2 .V2 2 2 o 2
(r +a” cos 0) (r +a” cos 8+r6r)

(6.10.13)

(=b)r : 8 2 28 2
) _ [, (b p-a) _ . 6(-b) p(=b) \_ V. cra sm (a cos v—r )
dg, —(v B, —v"""B, )—

1/2
(rz +a’ cos’ 0) (rz +a’cos” 0+ r6r)z

v 2crr a cos@(r2 +a’+ r6r)

1/2
(r2 +a’ cos’ 8) (r2 +a’ cos’ 0+ r6r)z

The second component age“) of the graph (6.10.13) is shown in Figure 6.10.1.

—18

AL(0) 0

I
T 0 T
6

-5.10

Fig. 6.10.1. Graph of the second components of (6.10.13) with » ~ 9 cm,
V./c=0.087 and v# =1m/s. The calculations are done using MathCad software

This graph almost completely coincides with the graph in Figure 6.9.2. This suggests that at a
sufficiently large distance from the core of the moving «electron» (i.e. at » > r¢), the induction (turbu-
lent) components of the accelerated motion of a-subcont and b-subcont in the outer shell of the moving
«electron» behave almost equally.

Indeed, when r >> rg, expressions (6.9.22) through (6.9.27) and (6.10.6) through (6.10.11) are

taking a simplified form
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2
-a) €76
or 7 272

2 2
crya” sin260

E(—a) ~
0
’ 2r°

b

(=a) _
E" =0.

2
B A 2cryacos® 1V, cos
or

2 2
r r

. 2 .
B o Clid sind ¥V, sinf
RS ~ ,

° r 27

(-a) _
B =0,

(6.10.14)

b

(6.10.15)

2
b o T

or ?’
ECH _c2r6a2 sin 20 ’
o0 23
ECP =0. (6.10.16)

op

2

B ~ _2cryacos® A cost

or l"2 l"2 ’

. 2 .

B o Cled sin __rgV.sin@

2} >

° r 27
B =0. (6.10.17)

So we see that at a large distance from the core of a moving «electron» laminar (straight-line)

acceleration of the a-subcont and h-subcont mutually oppose to each other, and the turbulent (rotation-

al) of acceleration a of a-subcont and h-subcont {with (6.9.28) and (6.10.13)} flow in the same direc-

tion.

6.11 Accelerated vacuum currents in the outer shell of
a moving “electron”. Vacuum electrodynamics
The total vector field of the accelerated a-subcont and
b-subcont (intra-vacuum) currents in the outer shell of a moving
«electron», according to the geometrized vacuum electrodynamics

of the Alsigna {see §¢ 5.1 through 5.7}, is determined by the ex-

pression (5.7.2)
ar=a""+ia"",

where

2 = E,09 + [y x B,

- acceleration of the a-subcont in the outer shell of a moving

«electrony;

a™ = B, + [y x B,

- acceleration of the b-subcont in the same outer shell of a

moving «electrony.

(6.11.1)

(6.11.2)

(6.11.3)

Fig. 6.11.1. Fractal illustration of the
twisted intra-vacuum accelerated cur-
rents of a-subcont and b-subcont

The expression (6.11.1), subject to (6.11.2) and (6.11.3), may be presented as

ar= (B, +iE, ") + (Iv") x B,S] +i[v0” x B,”)).

(6.11.4)
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This type of representation for the General vector field of intra-vacuum accelerations is due to
the fact that the current lines of accelerated a-subcont and bh-subcont are always mutually perpendicu-
lar. In other words, these intra-vacuum currents are twisted into bundles around the direction of gen-
eral motion (see Figure 6.11.1 and Figure 5.11.5 through 5.11.6).

Analysis of the expressions (6.9.22) through (6.9.24), (6.9.28) and (6.10.6) through (6.10.8),
(6.10.12) with taking into account (6.11.1) through (6.11.4) leads to the following conclusions:

— a vector field subcont intensity E,” (more precisely, a vector field of laminar acceleration of
subcont)
a;=E=E "+ E, " (6.11.5)
in the outer shell of the moving «electron» flattens (see Figure 6.11.2). This fully coincides with the
conclusions of classical electrodynamics;
— a vector field of turbulent acceleration of subcont az” = [v{™® x B,"] + i[v\"? x B,"™”] is a to-

roidal-helical axb-subcont vortex formed around the moving core of the «electron» (Figure 6.11.3).

->
flone F'
fI0K0FUL 82068

&
/f‘\\l\/ The outer shell
9.__“
S ) lone E sapsda, e /
dﬁwvryuwzocﬂ
5) ¢ V=const The core

Fig. 6.11.3. The field of the vector of turbu-
lent accelerations of the axb-subcont is a to-
roidal-helical vortex in the outer shell of an
«electron» moving at a constant speed Vz

a)

Fig. 6.11.2. Vector field of the subcont tension E” (ie.,
laminar accelerations of the axb-subcont) in the outer shell
of the «electron» moving with constant speed V,

For Figure 6.11.4a an attempt is presented to combine laminar and turbulent components of
vector fields describing the interweaving of accelerated axb-subcont flows (currents) in the outer shell
of an «electron» moving at a constant velocity V..

In Nature, there are many analogues for the moving vacuum formation
shown in Figure 6.11.4. For example, the movement of the collar flagellate (an
aqueous unicellular organism) causes a similar toroidal-helical flow of water.

This metric-dynamic (fully geometrized) model of an «electron» moving

at a constant velocity V, in the «vacuumy» from which it consists, contains a pos-

sible answer to the question about the nature of inertia of stable local vacuum ' “\“*\{‘;,5//

formations.
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a) 6)

Fig. 6.11.4. a) Accelerated laminar and turbulent axb-subcont currents in the external shell of an
«electron» moving at a constant speed V; b) Fractal illustration of a stable vacuum formation moving
in the "medium" from which it itself consists

The motion of a stable vacuum formation inevitably leads to the appearance of a toroidal-
helical vortex in its outer shell (i.e. around its moving core), and to the compactification and flattening
of the core (Figure 6.11.4 a). The faster this «particle» moves, the greater the speed and acceleration of
an axb-subcont in toroidal-helical vortex. Accordingly, in such a vortex there is more stored energeti-
city (i.e. mobility). Therefore, the moving «particle» is more difficult to disperse and more difficult to
change the direction of its movement due to the gyroscopic effect.

On the other hand, if accelerate the «electron» to a certain speed V-, then it will constantly
move in a «vacuumy» (i.e., in the absence of other «particles») with this speed and in the initially given
direction.

The inert properties of local vacuum formations are due to the inertia of the vacuum itself,
which is expressed in the finiteness of the velocity of propagation of vacuum disturbances (i.e., the ve-
locity of light). Thus, in the Algebra of Signature (Alsigna) there is no need to introduce additional en-
tities like Higgs bosons to explain the inert properties of the moving stable vacuum formations.

In this chapter Alsigna considers the easiest way to weave two intra-vacuum currents:
a-subcont and h-subcont with the same signature (+ — — —). However, it should be remembered that
each metric length with metrics (6.2.9) and (6.2.10), which we conditionally call a-subcont and
b-subcont, can be represented as a superposition of seven metric sub-lengths with signatures (5.71.33)
similar to (5.11.35). Therefore, at the next, deeper level of consideration, vacuum processes in the out-
er shell of the moving «electron» look much more complex and multicolored (in the sense of the colors

of vacuum chromodynamics) (Figure 6.11.5).
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a) Drawing of V. A. Lebedev b) Fractal illustration of a toroidal vortex
Fig. 6.11.5. Illustrations of the outer shell of a moving «electron» at the level of 2°-A,, ,-vacuum region

Recall that at the level of the 2°-A,, ,-vacuum
region, the fabric of Existence is woven not from two
4-sided "threads "(black and white), but from 16-and
multi-colored 4-sided "thread" (see §§ 1.11 through
1.13): 7 colors of thread + 1 white thread + 7 colors
of anti-threads + 1 thread black = 16.

Within the framework of the Algebra of Sig-
natures, each 4-face "thread" is the result of inter-

twining of seven "sub-threads", and this may contin-

Fig. 6.11.6. Illustration of the local vacuum units on

ue indefinitely long. The deeper the level of consid- the level of consideration 2°-7,,,~vacuum region

eration, the more elegant the local vacuum for-

mations look (Figure 6.11.7).

6.12 Precession of the axis of rotation of
the core of a moving «electron»

The spin of the core of a moving «electron» is an ex-
tremely complex phenomenon, the study of which should be
held in a separate extensive study. Here Alsigna considers
only some superficial aspects of this process.

As shown in Figure 6.12.1 and Figure 6.12.2 the core
of a moving «electron» is located at the neck of a toroidal-
helical vortex under the influence of a practically rectilinear-
ly and constantly flowing axb-subcont, described by the vec-

tor of subcont induction B, with components (0, 0, B,.").

The core

Fig. 6.12.1. The core of the moving "elec-
tron" is located in the neck of the toroidal -
helical vacuum vortex, where there is a vir-
tually constant and uniform field of the vac-
uum induction vector B, (0, 0, B,,)
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Recall that the spinor properties, e.g., a-subcont on the periphery of the «electron’s» core, are

described by a simplified spin-tensor (see §§ 5.12 through 5.14)

I"2 1 0 1
1—72+I’Sin0 +ir 2 2
7 L - o -2
R 2 2
r? s T 0 ir) (rsind 0
= + + + ) s
—ir 0 0 —rsin@
1 . 2 0 r? 1
—1r V4 . 1——
72 1—— —rsind e r? 0
l—fz I"e e 1_72
s 7
(6.12.1)

determinant of which is reduced to the generalized de Sitter metric (2.2.19).
The last three terms on the right side of the expression (6.12.1) are the components of the spa-

tial spin-vector o (o,, 0y, 7,):

0

6 0 ir rsin @ 0 (6.12.2)
o, = bl O-g = . bl O-(p = . bl
—ir 0 0 —rsin@

B
P

2
T

Chaotic rotation inside the core of the «electron», located in a constant vector field of the sub-

cont induction B,"”, is described by a two-component spinor

|*(0)) =

” efiK(r)B(E;)t
aoir | PO =)= lre 0 o) (6.12.3)
re

where A(r) is the moment of inertia of the «electron’s» core layer located at a distance » from its cen-

ter.

Substitute bra and ket vectors (6.12.3) to the left and to the right of spin-tensor (6.12.2)

P 1.
1——2 +rsinf +ir
7 P

I-—
T,
1
—ir r2 .
7”2 l-— —rsinf
l1-— 7

As a result of simple transformations of the matrix structure (6.12.4), taking into account

(r e—ix(r) Bt o ei?»(r) Bt

—iR(r)Bt
re ] . (6.12.4)

(B
r el?»(r)BOZ t

(6.12.1) and (6.12.2), we obtain the following projections of the averaged 3-dimensional spin vector
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<s> of the peripheral core layer of the moving «electron» located at the neck of axb-subcont toroidal-

helical vortex:

2
(s.)= L’JQZF - |z|2): 0, (6.12.5)
1=
6
=2 osha()B ) (6.12.6)
"
1——
1’62
(5,)= 22 _sinpa ()8 ] (6.12.7)

]/'2
l-—
s

From expressions (6.12.5) through (6.12.7)
we see that the axis of rotation of the peripheral lay-

er of the «electron’s» core is chaotically changing,

but on average it precesses around the axis z, or ra-

ther around the direction of the vector of the a - sub-

cont induction BO(’) 0, 0, BOZ(’)) in the sector and
with a frequency depending on the magnitude of the  Fig. 6.12.2. Averaged precession of the axis of rota-

. tion of the core of a moving «electron» around the
z - component of the vector of the a-subcont induc- direction of the vector of vacuum induction B,

tion B,." (Figure 6.12.2), which in its turn depends (0.0.8:) in the neck of the toroidal-helical vortex
on the speed of the «electron» V' {see (6.10.15)}.

Once again, we note that this paragraph only outlines the direction associated with the rotation
of the core of the moving «electron». A separate study should be devoted to the analysis of the com-

plex process of rotation of the core of moving local vacuum formations.

6.13 Straight-line and uniform movement of a «positron»

Within the Alsigna, the metric-dynamic model of the «positron» moving at a constant speed V-
(in the direction of the z-axis) is a negative copy of the «electron’s» metric-dynamic model (6.7.1)
through (6.7.7), and is described by the same generalized Kerr metrics (6.7.9) through (6.7.14), but
with the opposite signature (— + + +).

Doing the similar actions with the components of the metric tensor g;{" and g;”"” from the
metric (6.7.9) and (6.7.10) we receive for the outer shell of the «positron»:
- components of the vector of a-antisubcont intensity E, and the components of the vector of ¢ - an-

tisubcont induction B,
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c’r (a2 cos’ 0 — rZXr2 +a’ - rré) 2crr acosé?(r2 +a’ —r()r)

EG9 — ; BU9 —
or 3 ’ or 2 2 2 V2.2 2 2 2
2 r"+a-cos" @) \r'+a“cos"0-rr
Z(I—ZFSFZJ (r2+a2cos29)3 ( ) ( 6 )
r-+a“cos- 0
(+a) c*rroa® sin 20 B _ cra siné?(a2 cos’ —r2)
E," =- 3 > 00 T [, 2 22 2 2 2 2
. 3 (r +a’ cos 9) (r +a” cos 9—r6r)
Al-5—5—— (F2+a200529)3
r“+a“cos 0
+a) __
EG" =0, 6.13.1)  B,"’=0. (6.13.2)

- components of the vector of b-antisubcont intensity E,"™ and the components of the vector of

b-antisubcont induction B, ™

czrﬁ(a2 cos’ 0 —rQXr2 +a’ +rr6) 2crryacos 9(r2 +a’ +r6r)

E(+b) - _ ) B(*b) —
or 3 or 1/2 22
rr 20, (r2 +a’ cos’ 9) (r2 +a’cos’ 0+ rér)
Q1+ 5—5F—— (r +a“ cos 0)
r-+a cos 0
2 2 : 2 2 2
(+5) crra” sin26 , B _ crya sinBla” cos” 0 —r
Ey" = 3 o0 T (2, 2 2oV2(2, 2. 2 2’
2 (r +a’ cos 9) (r +a’ cos 9+r6r)
sl 2 2 2 )
2 l+ﬁ (I’ +a” cos 9)
r°+a cos” 0
-b) _
ECD —q; (6.13.3) Bf)(p =0. (6.13.4)

Comparing expressions (6.13.1) through (6.13.4) with
corresponding expressions for the outer shell of the «electrony
(6.9.22) through (6.9.24), (6.9.25) through (6.9.27), (6.10.6)
through (6.10.8), (6.10.9) through (6.10.11), we find that they

fully compensate for each other's manifestations on average:
E,“-E =0, B, -B,=0; (6.13.5)
E,"-E =0 B "-B,”=0. (6.13.6)
Thus, each accelerated movement of the subcont in the

outer shell of the «electron» corresponds to the opposite ac-

celerated movement of the antisubcont in the outer shell of the

Fig. 6.13.1. Fractal illustration of positron, which fully meets the vacuum condition (see Defini-
twisted threads of subcont and antisubcont tion 1.12.4),
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6.14 23-1_11,_16-vacuum dynamics

Expressions (6.9.22) through (6.9.24), (6.9.25) through (6.9.27), (6.10.6) through (6.10.8),
(6.10.9) through (6.10.11), (6.13.1) through (6.13.4) in their total describe the acceleration of different

sides (layers) of the same 2°- 1., | -l6-vacuum region.

The general field of accelerations in each local area of 2°- 1., .;s-vacuum region is described by

the vector quaternion

ar=a"+ia™ +ja" ) + ™, (6.14.1)
where
2t = E,09+ [v7? x B,C] (6.14.2)
— the vector of acceleration of a-subcont in the outer shell of the «electron» s
a® = £, + [v? x B, (6.14.3)
— the acceleration vector of the h-subcont in the same outer shell of the «electron» (H);
a® = E,9 + v x B, (6.14.4)
— the acceleration vector a-antisubcont in the outer shell of the «positron» (V);
a® = £, + [v*? x B, (6.14.5)
— the acceleration vector of b-antisubcont in the outer shell of the «positron» (H).

The joint action of all 4 mutually perpendicu-
lar vector fields (6.14.2) through (6.14.5) leads to the
creation of multi-layer 23—1_11,_16-Vacuum dynamics,
which, upon averaging of the intertwined subcont
currents in many aspects reduces itself to the classi-
cal electrodynamics. This fact was partly addressed
in [20, 22], and it 1s assumed that it will be studied in
more detail in the future.

We also note that the multi-layered 2224 1-16-
vacuum dynamics vacuum, proposed here, is univer-
sal. If in all of the equations of this chapter instead of
the radius of the core’s «electrons» or «positronsy
re~ 1.7-10™° cm we substitute any other radius from
the hierarchy (2.6.20), we get the same subcont-

antisubcont dynamics, but on a different scale. For

Fig. 6.14.1. Fractal illustration of a core of a vacuum
formation on a cosmic scale

example, substituting in all equations the characteristic 73~ 4-10'® cm, commensurate with the radius of

the core of the galaxy, we obtain a 2° -A1620-vacuum dynamics (see Figure 6.14.1, 6.14.2).

303



Fig. 6.14.2. Fractal illustration 23—/116,20-Vacuum dynamics
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