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Abstract: The aim of the article is to develop a stochastic interpretation of the quantum 

mechanics by E. Nelson. Based on the consideration of the averaged states of a chaoti-

cally wandering particle, the stationary and time-dependent stochastic Schrödinger-

Euler-Poisson equations (47) and (92) were obtained, which coincided with the corre-

sponding Schrödinger equations up to coefficients. In this case, the ratio of the reduced 

Planck constant to the particle mass is expressed through the averaged characteristics of 

a three-dimensional random process in which the considered wandering particle partici-

pates. The obtained stochastic equations (39), (47), (88), (92) are suitable for describing 

quantum phenomena and averaged states of particles not only at atomic and subatomic 

scales, but also similar stochastic systems of the micro- and macroworld. 
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of the Schrödinger equation. stochastic equation, stochastic quantum mechanics 

 

PACS numbers: 

03.65.−w (Quantum mechanics) 
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List of abbreviations and definitions 
MSQM is the massless stochastic quantum mechanics; 

QM is the quantum mechanics; 

TME is the total mechanical energiality; 

PSRP  is the pseudo-stationary random process; 

SQM  is the stochastic quantum mechanics; 

SRP  is the stationary random process; 

PA  is the probability amplitude;  

PDF  is the probability density function; 

ChWP is the chaotically wandering particle; 

Pico-particle is a particle or antiparticle with a size of ~ 10
–10

 – 10
–13

 cm; 

Micro-particle is a particle with dimensions of ~ 10
–7

 – 10
–3

 cm; 

Macro-particle is a compact bodies with dimensions of ~ 10
–2

 – 10
4
 cm; 

Mega-particle is a planet and other cosmic bodies with sizes of ~ 10
5
 – 10

9
 cm. 

s = S/m  is "efficiency" of the particle with mass m; 

ε = E/m  is "total mechanical energiality" of the particle with mass m; 

u = U/m  is "potential energiality" of the particle with mass m; 

t(vx) = T(vx)/m  is "kinetic energiality" of the particle with mass m.  
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1 BACKGROUND AND INTRODUCTION 

In modern physics, there are several dozen interpretations of Quantum Mechanics 

(QM). Each of them has its own advantages and disadvantages, but none of them 

is precisely defined, since many researchers often put different meanings into the 

same concepts. 

One of the reasons for this situation in quantum physics is associated with a 

different attitude to the wave function Ψ(x,t). 

Most experts agree with M. Born's statement that the square of the modulus 

of the wave function of a particle Ψ(x,t) is equal to the probability density function 

(PDF) of the particle's location at a point x 

                                          |Ψ(x,t)|
2 

= ρ(x,t).    

However, it should be borne in mind that, in general, this PDF is a complex 

function of several factors associated with the measurement process.     

         |Ψ(x,t)|
2
= ρ(x,t) = f [ρp(x,t), ρm(x,t), ρe(x,t), ρd(x,t), ρo(x,t)],             (1)                            

where 

ρp(x,t) is the PDF associated with the chaotic behavior of the particle; 

ρm(x,t) is the PDF, associated with the method errors; 

ρe(x,t)  is the PDF, associated with the influence of the external environment; 

ρd(x,t)  is the PDF, associated with the instrument errors; 

ρo(x,t)  is the PDF, associated with the operator errors. 

An example of functional dependence (1) is the PDF 
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is a variance of the i-th influencing factor on the measurement result. 
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All of the above factors are present when measuring the physical character-

istics of particles of any scale. However, depending on the particle size, these fac-

tors affect the result differently. 

At the same time, almost all specialists who study the properties of non-

relativistic pico-particles (i.e., particles with characteristic sizes of atomic and 

subatomic scales, 10
–10 

–
 
10

–13 
cm) use the same mathematical apparatus of quan-

tum mechanics (QM), designed to predict possible configurations and evolutions 

of wave functions Ψ(x,t) of one particle or an ensemble of identical particles. 

Focusing on certain factors influencing the measurement process, using the 

same mathematical apparatus, leads to the development of different interpretations 

of QM. 

For example, in a number of experiments pico-particles are extremely sensi-

tive to the influence of the measuring system and the observer on them. In this 

case, the wave function (1) should take into account all influencing factors, while 

the methodology for perceiving the results obtained is most consistent with the 

Copenhagen interpretation of QM, formulated by Niels Bohr and Werner Heisen-

berg. 

In other experiments, the factors that interfere with the measurement are so 

insignificant that they can be neglected. For example, we judge the possible states 

of an electron in a hydrogen atom by its emission spectrum. If we abstract from 

the slight broadening of the spectral lines associated with the influence of various 

accompanying factors, then in this case PDF (1) takes the form 

                           |Ψ(x,t)|
2
= ρ(x,t) = f [ρp(x,t) ρe(x,t)].          

This wave function characterizes only the properties of the electron itself, 

taking into account the influence of the vacuum, leading to the Lamb shift of the 

spectral lines.        
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In this article, we will adhere to the Stochastic interpretation of quantum 

mechanics, most clearly expressed in the works of Edward Nelson [2,3,4], pub-

lished in 1966 – 1985.           

In addition to E. Nelson, this interpretation of QM was developed by             

R. Fürth [5], I. Fényes [6], W. Weizel [7], M. Pavon, [8]. An alternative stochas-

tic interpretation of QM was developed by R. Tsekov [9].        

 Nelson's stochastic interpretation is associated with the logical construction 

of QM by analogy with the theory of Brownian motion [more precisely, the 

Ornstein-Uhlenbeck process]. 

In Nelson's interpretation, the reason for the chaotic behavior of a pico-

particle is associated with the effect of vacuum fluctuations on it. The diffusion 

coefficient of such a stochastic process turns out to be imaginary due to the ab-

sence of friction and the specificity of the vacuum viscosity. Thus, in the stochas-

tic interpretation of QM, the primary is not the wave function Ψ(x,t), but complex 

small-scale curvatures of the space-time continuum (i.e., the Wheeler-Bohm-

Vigier “quantum foam”), which affect to the colloidal pico-particle. 

In this case, PDF (1) takes the simplest form 

                        |Ψ(x,t)|
2
= ρ(x,t) = ρe(x,t)= ψ(x,t) ψ*(x,t),                           (3) 

since it characterizes only the chaotic behavior of a structureless particle under the 

influence of a turbulent environment. 

Recall that the Langevin and Fokker-Planck stochastic equations describe 

Brownian motion without taking into account the structure of particles and the 

uncertainty associated with measurement errors. However, there is a fundamental 

difference between Brownian particles (~ 10
–4

cm in size) and pico-particles          

(~ 10
–10

 – 10
–13

cm in size). Brownian (colloidal) particles can be observed with a 

microscope, practically without affecting them, while pico-particles, in principle, 

cannot be observed directly. 
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In this article, the maximally simplified (more precisely, not taking into ac-

count the measurement error and the influence of other particles) probability am-

plitude (PA) Ψ(x,t) = ψ (x,t) will be called the “pure” wave function. 

It should be noted that in most books and textbooks on quantum mechanics, 

initially the PA Ψ(x,t) means the “pure” wave function of the particle. This is one 

of the reasons for the lack of agreement between theorists and experimenters, as 

well as between specialists working in various fields of quantum physics. Appar-

ently, it was the attitude to the "pure" or "impure" wave function Ψ(x,t) that 

caused the disputes between A. Einstein (who studied Brownian motion in his 

youth) and N. Bohr (whose early works were associated with the atomic emission 

spectra). 

So, in this article, under the stochastic interpretation of quantum mechanics 

by Edward Nelson, we mean a version of QM in which the wave function ψ(x,t)  

characterizes only the chaotic behavior of a wandering particle under the influence 

of environmental fluctuations, without taking into account measurement errors 

and the influence of the operator. This particle (like a Brownian corpuscle) has a 

volume and a chaotic trajectory of motion. In this case, the wave function ψ(x,t) 

has the statistical character attributed to it by M. Born. 

At the same time, it is taken into account that within the framework of the 

Nelson’s stochastic interpretation of the QM, the “pure” PA ψ(x,t) turns out to be 

a kind of “intellectual thing-in-itself”. This is because the “pure” wave function 

ψ(x,t) can be found out only by solving stochastic differential equations. Any at-

tempt to perform a measurement will lead to a partial distortion or complete de-

struction of the stochastic system under study, and hence to a change in its PA 

ψ(x,t). 

This article attempts to develop the foundations of massless stochastic quan-

tum mechanics (MSQM), which is a development of Nelson's stochastic quantum 

mechanics (SQM) [2,3], and proposes a solution to the problem of measuring 

"pure" parameters of stochastic quantum systems. 
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A probabilistic model of a chaotically wandering particle (ChWP) is consid-

ered, which, like the pico-particle by E. Nelson [2], has a volume and a continu-

ous trajectory of motion. But in contrast to the SQM [2], in the MSQM there are 

no restrictions on the size of the investigated particle. Based on this model (by a 

method different from [2]), stochastic equations (39) (47), (89) and (92) are de-

rived, which are a generalization of the Schrödinger equations. 

According to the author, the main advantage of stochastic equations (39) 

(47), (89), and (92) obtained in this article is that they are suitable for describing 

averaged states and calculating quantum parameters of a chaotically wandering 

particle (ChWP) of any scale. 

In other words, the MSQM, proposed in this article, can make it possible to 

study stochastic processes not only at the atomic and subatomic levels of the or-

ganization of matter, but also at the macrolevel. For example, one can estimate the 

probability of manifestation of quantum effects when averaging the chaotic dis-

placements of the singularity in the galactic nucleus and predict the consequences 

arising from this. 

 

2 METHOD 

2.1 Probabilistic model of a wandering particle 

Consider a particle that, under the action of a multitude of unrelated force factors 

(including a fluctuating environment), constantly wanders chaotically in the vicin-

ity of a conditional center combined with the origin of a fixed coordinate system 

XYZ (Figure 1). 

Examples of such a chaotic movement of a particle are: an electron in a hy-

drogen atom, vibrations of an atom in a crystal lattice, chaotic flights of a fly in a 

jar, trembling of the nucleus of a biological cell, moving the center of mass of an 

embryo in the womb, wandering the tip of a tree branch under gusts of wind, 

moving the center of mass of a school fish in the ocean, vibration and displace-

ment of the iron core in the bowels of the planet, etc. 
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The total mechanical energy of a chaotically wandering particle (ChWP) at 

each moment of time and at each point in 3-dimensional space is equal to 

                            Е (x,y,z,t)   = T (x,y,z,t)  +  U (x,y,z,t),                       (4) 

where T(x,y,z,t) is the kinetic energy of the particle due to its velocity at time t; 

          U(x,y,z,t) is the potential energy of the particle associated with the elasticity 

of its environment, which tends to return this particle to the conditional center. 



Fig. 1. А simplified model of a particle that randomly wanders in the vicinity of the conditional 

center, combined with the origin of the coordinate system XYZ 

 

In the general case, each of the ChWP energies: Е (x,y,z,t), T(x,y,z,t) and 

U(x,y,z,t) is a random function of time and of a place relative to the conditional 

center. But the energies T(x,y,z,t) and U(x,y,z,t) so smoothly pass into each other 

that their sum is always equal to Е (x,y,z,t), i.e. condition (2) is always fulfilled. 

If the ChWP speed is small compared to the speed of light, then according 

to nonrelativistic mechanics, it has kinetic energy 

         ,
2
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or in a compact form 
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where pх( r


,t), pу( r


,t), pz( r


,t)  are the instantaneous values of the components of 

the momentum vector of a wandering particle at time t at a point with coordinates 

x,y,z; m is the mass of the particle; r

 is the radius vector with the origin in the 

conditional center of the stochastic system under study (r
2 

=x
2 

+ y
2 

+ z
2
) (Figure 1). 

The type of potential energy of the particle U(x,y,z,t) at this stage of the 

study is not specified. 

To simplify the mathematical calculations, consider a one-dimensional case 

that does not limit the generality of conclusions. In the case of three dimensions, 

only the number of integrations increases. 

The action of a moving particle in nonrelativistic mechanics is defined as 

follows [10] 

                 .),()],(),([)(
2

1

ttxEdttxUtpTtS

t

t

x                     (5) 

Due to the complexity of the trajectory of the ChWP movement, we will be 

interested not in the action (5) itself, but in its averaging 

                   .),(),(),([)(
2

1

ttxEdttxUtpTtS

t

t

x  

    

                   (6) 

The averaging of the action (6) is carried out over realizations taken over the 

same time interval t = t2 – t1.  

Let’s represent the average kinetic energy of the ChWP in the form 

                            ,),(
2

1
),( 2






 xxxx dррtp
m

tpT                                 (7) 

where ρ(px,t) is the PDF of the x-component of the particle momentum рх. 

In (7), averaging occurs over all possible рх of a particle, independent of 

time and of its position in the considered region of 3-dimensional space (see              

Figure 1). 
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Let’s represent the averaged potential energy and the averaged total me-

chanical energy of the ChWP in the form 

                              ,),(),(),( 




 dxtxUtxtxU                                  (8)

   

                             

,),(),(),( 




 dxtxEtxtxE 

                                  

(9) 

where ρ(х,t) is the PDF of the possible location of the projection of a wandering 

particle on the X axis (see Figure 1 a,b) at time t. 

Substituting Ex.s (7), (8) and (9) in (6), we obtain the average action of a 

chaotically wandering particle (ChWP) 
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           (11) 

The average action of the considered "stochastic system" (11) provides for 

the most difficult case, when various variants of the change in the averaged state 

of the ChWP with time t are possible. 

 

2.2 Stationary state of ChWP 

Let's consider a stationary version of a stochastic system, when the average be-

havior of ChWP does not depend on time. 

In this case, the behavior of the ChWP is described by a stationary random 

process (SRP) (see Appendix 1), whereby none of its averaged characteristics 

depend on time: 

                                          ρ(px,t) = ρ(px) 
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where )(xU  is the average potential energy of the ChWP at the point x; 

          )(xE  is the average total mechanical energy of the ChWP at the point x. 

Substituting (12) – (14) into the averaged action (6), we obtain 
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(15) 

Let’s represent the average action (15) in coordinate form. To do this, per-

form the following steps: 

1. Let’s write the PDF ρ(х) in the form of the product of two probability 

amplitude (PA) ψ(х): 

                                           .)( xxx                                          (16) 

2. Divide both sides of Ex. (15) by the particle mass m and change the vari-

able px= mvx with the transformation Jacobian J = 1/m, as a result we get 
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(17) 

where vx  is the instantaneous value of the x-component of the ChWP velocity vec-

tor; s, ε(х), u(х), t(vx) – massless quantities, which we will assign the following 

names: 

                                                          s = S/m                                                    (18) 

is the "efficiency" of the particle; 

                                            ε(х) = E(х)/m                                               (19) 

is the "total mechanical energiality" of the particle; 

                                                     u(х) = U(х)/m                                               (20) 

is the "potential energiality" of the particle; 
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                                             t(vx) = T(vx)/m = vx
2
/2                                          (21) 

is the "kinetic energiality" of the particle. 

3. Let's use the coordinate representation of the averaged x-component of 

the velocity vector of the ChWP, raised to the n-th power (A2.1) (Appendix 2).   

In particular, for n = 2, we have 
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where, according to A1.52, (see Appendix 1);         
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   is scale parameter,                                (23) 

where σx is the standard deviation of the stationary random process x(t) associated 

with the projection of the position of the ChWP on the X axis; 

          τx cor is the autocorrelation interval of the given random process x(t). 

4. Using Ex.s (12), (21) and (22), we represent the averaged kinetic ener-

giality of the ChWP in the form 
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5. The average potential energiality of a particle according to (13) and (20), 

and its average total mechanical energiality according to (14) and (19), taking into 

account (16), take the form 
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(26) 

6. Substitute Ex.s (24), (25) and (26) into the integral (17) 
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 (27) 

Combining all the terms in (27) under one integral, we obtain the following 

form of the average "efficiency" of the ChWP in the coordinate representation 
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(28) 

The average efficiency (28) characterizes the considered stochastic system 

in a stationary state, i.e., when the averaged state of a chaotically wandering parti-

cle (ChWP) does not change with time. 

In this case, the energiality balance of the considered stochastic system can 

be represented as 

                       .),,(),,(),,( constzyxuzyxtzyx                     (28а) 

Condition (28a) indicates that the ChWP, on average, does not lose its total 

mechanical energiality. In this case, it can be assumed that the viscosity of the 

medium surrounding the ChWP is complex, since the seething medium either 

takes a part of the total energiality from the particle, then returns it the same part 

of the energiality. 

 

2.3 Stationary stochastic Euler-Poisson equation 

Let’s find the extremal of the functional (28), i.e., define the function (x) for 

which the average efficiency 

             

.])()()[(
)(

)(
2

2

1

2

2

22

dxdtxuxx
x

x
xs

t

t

x
x  


















 






          

(29) 

takes an extreme value. 

Since there are no time-dependent functions in (29), we will seek the        

extremality condition of the internal integral 
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In the calculus of variations, it was shown [21] that the extremal y = f (x) of 

a general functional 
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 (31) 

is determined by the Euler-Poisson equation [21] 

                     .0)1(... )(''2

2

'  nyn

n
n

yyy F
dx

d
F

dx

d
F

dx

d
F             (32) 

In the case of searching for the extremal of functional (30), we have 

                 y =  (x),  ],)()()[(
)(

)(
2

2

2

22

xuxx
x

x
xF x 




 





          (33) 

in this case, the Euler-Poisson equation (32) is simplified 

                                     .0''2

2

'  yyy F
dx

d
F

dx

d
F                                  (34) 

where  
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x
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 


,  0' yF   and   .)(

2

2

'' xF x
y 


      (35)  

Substituting (35) into (34), taking into account 

                                           
,

)()(
2

2

2

2

x

x

dx

xd








                                      
(36) 

we obtain the one-dimensional stochastic Euler-Poisson equation 
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
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
xuxx

x

xx 


                        
(37) 

Generalization to three dimensions leads to an increase in the number of in-

tegrations, while instead of Eq. (37), we get                                          (38) 
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or in a compact form                     

                    
, 0)( ])()([  +)(

2
 2

2

 rrurrr 




                           
(39)

 

where 
2

2

2

2

2

2
2

zyx 














 

is the Laplace operator;                                 (40) 
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                                           (41) 

is the scale parameter, where for the three-dimensional case: 

                                   
222

3

1
zyxr                                         (42) 

is the standard deviation of a random 3-dimensional trajectory of the ChWP from 

the conditional center of the stochastic system under consideration (Figure 1); 

                                corzcorycorxcorr  
3

1
                                   (43) 

is the autocorrelation interval of a given 3-dimensional stationary random process. 

Ex. (39) will be called the massless stationary (i.e., time - independent) sto-

chastic Euler-Poisson equation for finding the extremal )(r = (x,y,z) of func-

tional                                                                                                                (44) 

,]),,(),,()[,,(),,(),,(
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22
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dxdydzdtzyxuzyxzyxzyxzyxs

t

t

r
r    
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
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
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







 



 
with the energiality balance of the considered stationary stochastic system (28a). 

 

2.4 Stochastic Schrödinger-Euler-Poisson equation 

Suppose that the total mechanical energiality of the ChWP always remains con-

stant, then equation (4), taking into account Ex.s (19) – (21), is simplified to 

  
                          ε = t(x,y,z,t) + u(x,y,z,t) = const.                             (45) 

In such a stationary stochastic system, the kinetic energiality of the ChWP   

t(x,y,z,t) and its potential energiality u(x,y,z,t) change so randomly and smoothly 

transform into each other that their sum (i.e., the total mechanical energiality ε) 

always remains constant. 

Condition (45) suggests that in this case, the ChWP never loses its total me-

chanical energiality for friction with the environment. The reason for such a cha-

otic behavior of a particle can be random fluctuations of its potential energiality. 
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Averaging Ex. (45) leads to the condition 

                            ,),,,(),,,( consttzyxutzyxt                           (46)  

and equation (39) takes the form 

                        , )()( )(+)(
2

  2
2

rrrurr 
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
                               (47) 

In the nonrelativistic massless stochastic quantum mechanics (МSQM), de-

veloped in this article, equation (47) is an analogue of the stationary (i.e., time - 

independent) Schrödinger equation 

                       
).(  )( )(  +)(

2
  2

2

rErrUr
m


                              (48)

  

Let’s divide both sides of Eq. (48) by the particle mass m 

                   
,)( 
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
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 

                          
(49) 

and take into account definitions (19) – (20). As a result, we represent the station-

ary Schrödinger equation in the following form 

                               
,)(  )( )(  +)(

2

1
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
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(50)

 

Comparing equations (47) and (50), we find that they completely coincide for 

                                          

.
2 2
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r
r









                                             

(51) 

this relationship has already been obtained in Appendix 1, see Ex. (A1.49). 

Therefore, we will call Ex. (47) the massless stationary stochastic Schrö-

dinger-Euler-Poisson equation for finding the extremal (x,y,z) of the functional 

     .]),,()[,,(),,(),,(
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22
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t
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
  (52) 

with energiality balance (46). 
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2.5 Stochastic quantum operators 

Let’s show how operators are obtained in massless stochastic quantum mechanics 

(MSQM). To do this, let us return to considering the model of a chaotically wan-

dering particle (ChWP) shown in Figure 1. 

During the chaotic movement of a particle in the vicinity of the conditional 

center, it constantly changes the direction of its movement. Therefore, a particle at 

each moment of time has an angular momentum 

                                                

,prL 

                                                

(53) 

where r


is the radius vector from the conditional center to the particle (Figure 1); 

vmp  is the instantaneous value and direction of the particle momentum vector. 

Let’s divide both sides of the vector Ex. (53) by the value m, as a result we 

obtain the angular velocity vector 

                                       

.
|||| 22 r

vr

rm

L




                                         

(54) 

We represent the vector equation (54) in the component form 
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r
       (55) 

Let's average these components 
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r
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      (56) 

We use the coordinate representation of the averaged components of the ve-

locity vector (A2.2) for n = 1 
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and take into account that, for example, in (57) 
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                                   (60) 

Therefore, identities (57) – (59) are equivalent to massless stochastic opera-

tors of the components of the velocity vector  
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here it is taken into account that for the isotropic case .rzyx    

Massless stochastic operators (61), taking into account (51), correspond to
 

the operators of the components of the momentum vector of the QM [22] 

                            

.,,
zi

p
yi

p
xi

p zyx















 

                          

 

Substituting (57) – (59) into (56), taking into account (60), we obtain mass-

less stochastic operators of the components of the ChWP angular velocity vector 
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 (62) 

which correspond to the quantum mechanical operators of the components of the 

angular momentum vector [22] 
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In a spherical coordinate system, stochastic operators (62) have the form 
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The stochastic massless operator of the square of the modulus of the angular 

velocity of the ChWP is 
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(64) 

All massless stochastic quantum operators massless stochastic quantum me-

chanics (MSQM), analogous to the QM operators, can be obtained in a similar 

way. Only in the MSQM, instead of the ratio /m, there is a scale parameter (41), 

therefore, the BSCM is suitable for describing stochastic processes of any scale. 

In a similar way, the mathematical apparatus of the entire massless stochas-

tic quantum mechanics (MSQM) can be built, which almost completely coincides 

with the mathematical apparatus of the QM. But MSQM is based on the principles 

of "ordinary" (classical) logic, and is suitable for describing quantum systems and 

effects of any scale. 

 

2.6 The uncertainty principle in MSQM 

The uncertainty in the velocity of a chaotically wandering particle (ChWP) is de-

termined by the standard deviation 
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(65) 

and the uncertainty in the particle coordinate is determined by the volatility  



     

Stochastic interpretation of QM                                                                                                                               19 

_____________________________________________________________________________________________ 

 
 

                                             

.)()( 22 dxxxxx 






                                  

(66) 

The joint uncertainty in coordinate and momentum can be represented as 
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(67)

    

This uncertainty principle of the MSQM is equivalent to the Heisenberg's 

uncertainty principle xpx ≥ 2 . 

 

2.7 The time-dependent Schrödinger-Euler-Poisson equation 

Let the averaged characteristics of the random trajectory of ChWP change over 

time, but so slowly that in each small time interval Δt, all these characteristics can 

be considered unchanged. This unstable behavior of a particle is considered in 

Appendix 1 and is called a pseudo-stationary random process (PSRP). 

Let’s also assume that for such a pseudo-stationary stochastic system, the 

total mechanical energiality (TME) changes insignificantly over time 

                                    .),,,(),,,(),,,( tzyxutzyxttzyx                            (68) 

In the model under consideration, an insignificant averaged change in the 

TME of a wandering particle ),,,( 0 ttzyxd t   is associated with a slow 

change in its kinetic energiality ),,,( 0 ttzyxdt   due to external influence in 

the form of "heating" or "cooling" of the stochastic system. 

Since the change in the TME is slow, you can write 

                 ,),,,(),,,(),,,( 00 ttzyxdtzyxtzyx t                   (69) 

the signs (+) or (–) in (69) are associated, respectively, with an increase or a de-

crease in the averaged TME over time t. 
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In the future, to reduce the calculations, we will consider the one-

dimensional case, without prejudice to the generality of conclusions for the case 

of three dimensions, and represent (69) in an abbreviated form 

                         ,),(),(),( 00 ttxdtxtx t                            (70) 

where )( 0 ttd t 
 
is the average small change in the TME of a chaotically wan-

dering particle (ChWP), associated with an increase (or decrease) in its average 

kinetic generality over a short time interval Δt. 

In this case, the average efficiency of the ChWP (i.e., the result of dividing 

both parts of Ex. (6) by the mass of the particle m) has the form 
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or, taking into account (70) 
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          (72) 

By analogy with (10), we present the average efficiency of (72) as 
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Let's write this expression in coordinate representation. For this, we express 

the PDF ρ(vx,t) and ρ(х,t) in terms of the  probability amplitude ψ(х,t). According 

to (A1.55) and (A2.2) (see Appendix 1 and Appendix 2) we have: 
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In Ex. (77) it is taken into account that according to (A2.23) 
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(78) 

where D is the imaginary part of the complex diffusion coefficient B=iD of a cha-

otically wandering particle (ChWP). 

Substituting (75) – (77) into (73), we obtain the coordinate representation of 

the pseudo-stationary averaged efficiency of the ChWP                                  (79)   
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Let’s find the extremal (x,t) of the functional (79). 

First, we recall that the extremality condition of the functional of the form 
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is determined by the Euler-Poisson equation [21, p. 316] 
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where 

  Lz is the partial derivative of the Lagrangian L with respect to z=(x,t);      (82) 
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wherein 



  22                                                                                                                                        М. Batanov-Gaukhman 

_______________________________________________________________________________ 

 

 

                              
 

x

g
L

x

p
L

x

z
LLL

x
pgpppzpxp


















                      (83) 

is full derivative with respect to x; 
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is full second partial derivative with respect to x
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is full mixed partial derivative with respect to t and x. 

As the Lagrangian L, we use the integrand from the time-dependent (pseu-

do-stationary) averaged efficiency of the ChWP (79) 
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As a result of substitution of Lagrangian (84) into Ex.s (82) and (83), we obtain 
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Substituting Ex.s (85) into the Euler-Poisson equation (81), we obtain the 

required equation for determining the extremal ψ(х,t) of the functional (79) 
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Generalization to three dimensions, leads to an increase in the number of in-

tegrations, while instead of Eq. (86), we get 
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or in a compact form 
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where r


is the radius vector with the origin in the conditional center of the object 

under study (Figure 1), (r
2 

= x
2 

+ y
2 

+ z
2
); r – scale parameter (41) [or (A2.24)]; 
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Eq. (88) can be represented as 
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where according to (41) [or (A2.24)] 
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(89a) 

The ratio of the volume of a cylinder to the volume of a sphere inscribed in it is 

3/2. Archimedes was so shocked by this discovery that he requested his kinsmen to 

engrave a sphere inscribed in a cylinder on his tombstone. It is believed that later 

Cicero found the grave of Archimedes thanks to this symbol (note by S. Petukhov). 

 

Ex. (89) will be called the massless pseudo-stationary stochastic Euler-

Poisson equation. 

This equation allows us to find the extremal ψ(x,y,z,t) = ),( tr


  of the func-

tional of the averaged efficiency of the ChWP 
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with the energiality balance of the investigated pseudo-stationary stochastic sys-

tem (68), which changes so slowly that in each small time interval ),,,( tzyx  it 

can be considered constant. 
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2.8 Pseudo-stationary (time-dependent) stochastic 

       Schrödinger-Euler-Poisson equation 

 

Both parts of the time-dependent Schrödinger equation 
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divided by the particle mass m and multiplied by – 2 
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Taking into account (25) and (51), this expression takes the form 
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On the other hand, if we assume that in Eq. (89), the total mechanical ener-

giality of the ChWP at the initial time moment t0 is equal to zero, i.e. 
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then this equation takes the form 
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(92) 

Obviously, Eq.s (90a) and (92) differ only in signs in front of their left side 

and in the value of the scale parameter ηr1. Therefore, Eq. (92) will be called the 

massless time-dependent stochastic Schrödinger-Euler-Poisson equation with an 

imaginary diffusion coefficient B = iD = iηr1/3. 

Recall that the + or – sign on the left side of Eq. (92) depends on the in-

crease or decrease with time of the averaged total mechanical energiality of the 

considered ChWP [see Ex. (69)]. 

It is interesting to note that Erwin Schrödinger wrote the equation (4 '') in 

"Quantisierung als Eigenwertproblem, Vierte Mitteilung", Annalen der Physik 

(1926) [1] in the following form 
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Let’s rearrange the terms in this expression and take into account that  = ℎ/2, 
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There is a complete analogy (or complete coincidence for  = ℎ/2) between 

the basic KM Eq. (93) and the MSQM Eq. (92). 

 

3 CONCLUSIONS 

The article considers the averaged states of a particle (i.e., a compact body) of any 

size, which, under the influence of fluctuations in the environment and/or various 

long-range forces, continuously wanders (oscillates, displaces) in 3 - dimensional 

space like a Brownian particle. 

A constantly trembling (shifting, oscillating) body is represented as a chaot-

ically wandering particle (ChWP) with a continuous trajectory of motion and vol-

ume. At the same time, the internal structure of the ChWP is not considered and 

the deformations of its shape are not taken into account.  

These ChWP include the centers of mass of: a valence electron in a hydro-

gen-like atom, a vibrating atom in the crystal lattice, the fluttering heart in the 

chest of an animal, the trembling yolk in a chicken egg, a floating moth in the 

vicinity of a burning lamp, swimming fish in the aquarium, a moving mosquito 

swarm, a flying mosquito in a swarm, a quivering organelle in a biological cell, 

the oscillating biological cell itself in living tissue, the vibrating iron core in the 

bowels of the planet, wandering pollen in diluted sugar syrup; an air bubble toss-

ing about in a boiling liquid, a wiggling embryo in the womb; a shifting school of 

fish in the ocean, a moving astronaut in a space station module, a rushing galaxy 

in outer space, a fluttering flower in the wind, etc. 
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All these stochastic systems are similar to each other and obey the same 

laws, taking into account different types of friction coefficient and viscosity of the 

medium surrounding the ChWP, as well as the duration of the average period of 

its behavior. For example, in order to average the chaotic flights of a bird in a 

cage, a week of continuous observation is required; while averaging the chaotic 

displacements of the galactic nucleus relative to the main line of its motion in out-

er space will require millions of years of research. But the results of such observa-

tions may turn out to be similar, despite the large difference in the scale of these 

events. 

For example, in §3.6 [27, arXiv:1702.01880], it is predicted theoretically 

that the possible averaged states of the vibrating nucleus of a biological cell are 

similar to discrete states of a 3-dimensional quantum mechanical oscillator (i.e., 

an elementary particle under similar conditions). If these microscopic quantum 

effects are confirmed experimentally, then we will be able to outline ways to 

solve the measurement problem in stochastic quantum mechanics. 

Within the framework of the МSQM, the problem of studying "pure" states 

of pico-particles is proposed to be solved as follows. It is necessary to find (or 

simulate) a stochastic macroscopic system, similar to the investigated picoscopic 

system (i.e., a chaotically wandering pico-particle), and carry out experiments 

with the macroscopic system without exerting a tangible effect on it. Then, the 

results of measurements at the macro level are projected onto possible similar 

manifestations of the picoscopic system.  

Within the МSQM, such an approach to the study of "pure" states of a pico-

scopic and megascopic systems is possible, since the philosophical foundations of 

this stochastic mechanics are rooted in antiquity and are based on the belief that 

all levels of the Universe are similar to each other. In this sense, МSQM is a uni-

versal theory for all levels of organization of chaotically oscillating (shifting, 

trembling, wandering, moving) matter. 

https://arxiv.org/abs/1702.01880
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As applied to pico-particles (i.e., particles of atomic and subatomic scale), 

the МSQM corresponds to the stochastic quantum mechanics (SQM) of Edward 

Nelson [2]. In this case, the МSQM Eq.s (47) and (89), derived in this article on 

the basis of the principle of the extremum of the "efficiency" of the ChWP, coin-

cided with the corresponding Schrödinger Eq.s (48) and (90) up to coefficients. 

In other words, in the massless stochastic quantum mechanics (МSQM), the 

“pure” wave function ψ(х,t) is the extremal of the functional of the averaged “effi-

ciency” of the ChWP, written in the coordinate representation. 

Stochastic Eq.s (47) and (89) have a number of the following advantages 

over the corresponding Schrödinger equations (48) and (90): 

1]. In the reasoning given to derive stochastic Eq.s (47) and (89), no re-

strictions were imposed on a chaotically wandering particle (ChWP), except for 

the total energiality balances (46) and (68). That is, ChWP is an ordinary particle 

that has: volume, trajectory of movement, location and momentum at every mo-

ment of time. In other words, the derivation of the stochastic Schrödinger-Euler-

Poisson Eq.s (47) and (89) was obtained on the basis of “ordinary” (classical) log-

ic using the theory of probability, the theory of generalized functions, and the cal-

culus of variations (more precisely, the Lagrangian formalism). 

Whereas in 95 years, since the appearance of Schrödinger's equations in 

1926, many researchers have proposed various methods of deriving them, relying 

on the axioms of many different interpretations of quantum mechanics, but no 

universally recognized result has been obtained. 

The scientific community has not succeeded in developing logically con-

sistent justifications for the QM axioms. One of the reasons for the general dissat-

isfaction was the lack of a "beautiful" derivation of the Schrödinger equations. 

2]. The reduced Planck's constant ( = 1.055·10 
– 34

 J/Hz) limits the scope of 

the Schrödinger equations (48) and (90), and the entire QM as a whole, to the de-

scription of atomic and subatomic scale phenomena. 
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The fact is that the ratio /m, which is explicitly or latently present in the 

Schrödinger equations, only then turns out to be physically significant when the 

particle mass m is very small (for example, it is believed that the electron rest 

mass me = 9.109·10 
– 31 

kg). 

Whereas the field of application of the stochastic Schrödinger-Euler-Poisson 

equations (47) and (89) is not limited by anything. 

To use Eq.s (47) and (89) to describe the averaged states of any of the above 

stochastic systems, it is necessary to estimate their scale parameter ηr (41). For 

this, it is necessary to determine the standard deviation σr and the autocorrelation 

interval τr cor of a three-dimensional random process, in which the corresponding 

particle participates, on the basis of sufficiently long observations of the center of 

mass of the ChWP. 

As an example, Appendix 3 shows the possibility of using the massless sta-

tionary stochastic Schrödinger-Euler-Poisson equation (47) to obtain quantum 

numbers characterizing the possible averaged states of a chaotically oscillating 

nucleus of a biological cell during the interphase period. 

3]. The stochastic equation (47) is also applicable to describe the averaged 

states of a chaotically moving center of mass of an electron in the vicinity of the 

nucleus of a hydrogen-like atom. If, as a result of statistical processing of indirect 

observations of the chaotic behavior of a valence electron in such an atom, it turns 

out that its scale parameter is 

                 ,/10116,0
101,9

10055,12 23
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then Eq.s (47) and (50) for this case will turn out to be almost completely equiva-

lent. In this sense, the time-independent Schrödinger equation (50) can be regard-

ed as a particular case of the stationary stochastic Schrödinger - Euler - Poisson 

equation (47). 
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4]. In Schrödinger's equations (48) and (90), the mass of an elementary par-

ticle is present. But this mass cannot be directly measured by macroscopic meas-

uring instruments. 

On the other hand, in the stochastic Schrödinger-Euler-Poisson equations 

(47) and (89) there is no particle mass. In this case, the standard deviation σr and 

the autocorrelation interval τr cor  of a three-dimensional random process, in which 

the ChWP is involved, can always be estimated based on the statistical processing 

of the results of sufficiently long observations of practically any stochastic sys-

tem. Therefore, the stochastic Eq.s (39), (47), (89), and (92) obtained in this arti-

cle are of a universal nature. 

МSQM predicts that many stationary random processes (in which ChWP 

are involved) have the possibility of transition from one stationary state to another 

with the absorption or release of a certain part of the total mechanical energiality. 

This is easy to check, for example, in the case of a moth constantly chaoti-

cally flying around a luminous lamp. With a video camera, you can record his 

chaotic movements for a long time. If you then scroll through the video recording 

at high speed, then the moth will not be visible on the screen, but there will be a 

stable blurry dark spot, which reflects the PDF of the location of its center of 

mass. It should be expected that if the moth is not disturbed by anything, then the 

blurred spot will resemble a Gaussian PDF with the greatest darkening in the area 

of the center of the light bulb. However, if the moth is somehow energetically 

influenced, for example, by heat or ultrasound with a certain frequency, then its 

average behavior can abruptly change. In this case, the blurred spot can change 

the configuration to the average shape of a ring or figure-eight, etc. 

Also, the center of mass of a flower, depending on the intensity of gusts of 

wind, can, on average, describe a straight segment, a circle, an ellipse, a figure- 

eight, or another Lissajous figure. 

Similar 2-D and 3-D quantum effects appear in all ChWP of any scale. This 

contains the main idea of massless stochastic quantum mechanics (MSQM): 
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“Studying stochastic objects of the macrocosm using conventional (benchtop) 

methods, we simultaneously obtain information about all similar objects of the 

microcosm and objects of cosmic scale. 

The approach proposed in this paper makes it possible to derive the equa-

tions of nonrelativistic massless stochastic quantum mechanics (MSQM) (39), 

(47), (89), (92) based on principles fundamentally different from the ideological 

foundations of modern QM interpretations: Copenhagen, Many-worlds, Con-

sistent histories, Decoherence, etc., but the mathematical apparatus of the MSQM 

turns out to be completely analogous to the mathematical apparatus of the QM. 

Apparently, many other equations of quantum field theory can be obtained 

in a similar way, for example: the Klein-Fock-Gordon equation, the Dirac equa-

tion, the Maxwell equations, etc. It is possible that the algorithm for deriving them 

is similar to the approach given in this work: 

1) the deterministic action of the system is recorded; 

2) mass is extracted from the action of the system and the "efficiency" of 

this system is obtained; 

3) the efficiency of the system is averaged; 

4) all the averaged terms in the integrand of the averaged "efficiency" are 

represented through the PDF ρ(x); 

5) all the terms of the Lagrangian of the averaged "efficiency" of the system 

are converted into a coordinate representation; 

6) the equation for the extremal of the resulting functional is determined by 

means of the calculus of variations. 

It is possible that further research will confirm the validity of this approach 

to the derivation of the field theory equations. 

We hope that this work will assist in the discovery and study of quantum 

phenomena not only of the microcosm, but also of the macro- and mega Worlds. 
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                                                                                            Appendix 1 

  

A1 Determination of the PDF of the derivative of a stationary and 

pseudo-stationary differentiated random process 

 
Consider several realizations of the random process ξ(t) (Figure A1.1). 

In General, this process is non-stationary, but we assume that all the aver-

aged characteristics of this process in the section ti do not significantly differ from 

its similar averaged characteristics in the section tj . That is, we require that all the 

moments and central moments of this process in the section ti are approximately 

equal to the corresponding moments and central moments in the section tj when 

ij tt 
 
tending to zero. For example, 

                                    
;)()( ji tt  
                                                   (П1.1) 

                                  ,)()( 22

ji tt    etc.                                         (П1.2) 

                   



  32                                                                                                                                        М. Batanov-Gaukhman 

_______________________________________________________________________________ 

 

 

              

Fig. A1.1. The realizations of a differentiable stationary or pseudo-stationary random process ξ(t). 

These realizations can be interpreted, for example, as time changes in the projection of the location 

of a wandering particle on the X axis (see Figure 1), i.e. x(t) = ξ(t) 

 

 

In other words, the considered random process ξ(t) is either stationary or 

close to it. However, in each section tm, all the averaged characteristics of such a 

process remain unchanged. For convenience, we will call such a process “pseudo-

stationary random process” (PSRP). 

All conclusions about the PSRP, made in this appendix, also apply to the 

stationary random process (SRP). 

There is a known procedure for obtaining the PDF ρ(ξk) of the derivative of 

a random process   dttdt /)(    with a known two-dimensional PDF of a random 

stationary process [17, 18] 

                                   
   .,;,, jjiiji tt                                     (A1.4) 

In Ex. (A1.4) we make the change of variables 
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  with the Jacobian [J] = τ. 

As a result, from the two-dimensional PDF (A1.4) we obtain 
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
kkkkkkkk tt .         (A1.6) 

Integrating (A1.6) over ξk, we find the required PDF ρ(ξk) in the section tk [6]: 

                            .),()( kkkk d  




                                   (A1.7) 

Let’s now consider the possibility of obtaining the PDF ρ(ξk) for a known 

one-dimensional PDF ρ(ξ). 

To solve this problem, we use the following properties of random processes: 

1. A two-dimensional PDF of a random process can be represented as 

[17,18] 

                               ,,/,,,;, iijjiijjii ttttt                        (П1.8) 

where ρ(ξj, tj /ξi, ti) is the conditional PDF. 

2. For any PSRP and SRP the approximate identity is valid 

                                          .,, jjii tt                                        (A1.9) 

3. The conditional PDF of a random process at τ = ti – tj tending to zero be-

comes in the delta function 

                                 .,/,lim
0

ijiijj tt 



   

                           (A1.10) 

Using the above properties, we prepare a random process in the interval               

[ti = tk – τ/2; tj = tk + τ/2] as τ → 0, based on the following procedure. 

The PDF ρ(ξi) = ρ(ξi,ti) in the section ti and the PDF ρ(ξj) = ρ(ξj,tj) in the sec-

tion tj can always be represented as a product of two functions 

                                ,)( 2

iiii                              (A1.11) 
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                               ,)( 2
jjjj  

 

where φ(ξi) is the probability amplitude (PA) of the random variable ξi in the sec-

tion ti ; φ(ξj) is a PA of a random variable ξj in the section tj. 

For PSRP, the approximate expression is valid 

                                             ,ji                                         (A1.12) 

which can be verified by taking the square root of both parts (A1.9). 

For SRP, the approximate relation (A1.12) becomes the equality 

                                               
   ,ji                                      (A1.12а) 

Note that the approximate Ex. (A.1.12) at τ → 0 for the majority of non-

stationary random processes (including for PSRP) also turns into the equality 

                                           





ijjii ttt ,lim,
0

.                           (A1.13) 

When the condition (A.1.12) [or (A.1.12a)] is satisfied, Ex. (A1.8) can be 

represented in the following form 

                                     ,/, jijiji                   (A1.14) 

where ρ(ξj /ξi) is the conditional PDF. 

Let’s write (A.1.14) in expanded form 
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        (A1.15) 

Let τ tend to zero in (A1.15), so that the given time interval contracts uni-

formly on the left and right at the middle moment of time tk = (tj – ti)/2. In this 

case, taking into account (A1.10), from (A1.14), we obtain the exact equality 

         
  ),()()()()/()(lim),(lim

00
jkikjkikjijiji 





      (A1.16) 

where ξik is the result of the tendency of the random variable ξ(ti) to the random 

variable ξ(tk) on the left; ξjk is the result of the tendency of the random variable             

ξ(tj) to the random variable ξ(tk) from the right. 
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Integrating both sides of Ex. (A1.16) over ξik and ξjk, we obtain 
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 jkikjkikjkik dd                         (П1.17) 

In (A1.17), the properties of the δ-function are taken into account. 

Let’s set the specific form of the δ-function. To do this, consider a random 

Markov process for which the Fokker - Planck equation is valid 

                             ,
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 ijij
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                         (П1.18) 

where B is the diffusion coefficient. 

One of the solutions of this differential equation, as is well known, has the 

form 
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         (П1.19) 

where q is the generalized frequency. 

For τ = tj – ti → 0 from (A.1.19) we obtain one of the definitions of the             

δ-function 
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

      (П1.20) 

This result was obtained for the case as τ → 0. Therefore, the δ-function 

(A1.20) can correspond not only to a Markov random process, but also to many 

other stationary and non-stationary random processes. In other words, one could 

immediately assume that the δ-function for the PSRP has the form (A.1.20) with-

out referring to the Fokker - Planck equation (A.1.18). 

Let’s substitute δ-function (A.1.20) into Ex. (A.1.17) 
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and change the order of integration in (A1.21) 
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 (A1.22) 

Let’s take into account that, according to (A1.13), for the SRP and PSRP the 

condition φ(ξik) = φ(ξjk) is fulfilled. Therefore, Ex. (A.1.22) can be represented as 
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 dqqq                                       (A1.23) 

where                        ,}exp{)(
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                                   .}exp{)(
2

1*






 kkk diqq 


                      (A1.25) 

The integrand )()( qq  in (A1.23) meets all the requirements of the PDF 

ρ(q) of the random variable q: 

                                .)()()()(
2

qqqq   
                           (A1.26) 

Let’s clarify the physical meaning of q. 

The features of the considered random process impose the following re-

strictions on the generalized frequency q: 

1) the random variable q should characterize the random process ξ(t) in the 

section tk (Figure A1.1), i.e. in the interval τ = tj – ti tending to 0; 

3) the variable q must belong to the set of real numbers, that is, take any 

value from the range ] – ∞, ∞ [. 

These requirements are satisfied by the following random values associated 

with the PSRP (or SRP) in the time interval τ: 
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                (A1.27) 

To clarify which of these values is associated with the generalized frequen-

cy q, consider one implementation of the process under study (see Figure A1.1). 

The function ξ(t) in the interval at τ < τcor [where τcor is the autocorrelation interval 



     

Stochastic interpretation of QM                                                                                                                               37 

_____________________________________________________________________________________________ 

 
 

of the random process ξ(t)] can be expanded in the Maclaurin series 
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The Ex. (A1.28) is presented in the following form 
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where   iit   ,   jjt   , and we tend   to zero. 

In this case (A1.29) is reduced to the expression 
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                                       (A1.30) 

where  kk t   (see Figure A1.1). 

Therefore, it remains to assume that the generalized frequency q in Ex.s 

(A1.23) – (A1.26) is linearly related only to ξ'k, i.e. 

                                                ,


kq


                                            (A1.31) 

where η is the scale parameter.   

The Ex. (A1.31) can be obtained in another way. 

Each exponential, for example, from the integral (A1.24), corresponds to a 

harmonic function with frequency q 

                           )}(exp{ tiq → ,)sin()( qtАtk 
 
                      (A1.32) 

this is one of the harmonic components of the random process ξ(t). 

Differentiating (A1.32), we obtain )cos()( qtqAtk  , whence it follows 
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0
.                                (A1.33) 

For A = η, Ex.s (A1.31) and (A1.33) coincide. 

Substituting (A1.31) into (A1.23) – (A1.26), we obtain the following re-

quired procedure for obtaining the PDF ρ(ξ,t) of a pseudo-stationary random pro-
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cess (PSRP) or stationary random process (SRP) ξ(t) in any section tk for a known 

one-dimensional PDF ρ(ξ,t) in the same section: 

1. A given one-dimensional PDF ρ(ξ,t) is represented as a product of two 

probability amplitudes (PA) φ(ξ): 

                                          .,,),( ttt                                     (A1.34) 

2. Two Fourier transforms are performed 
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 ditt                 (A1.36) 

3. Finally, for an any section of the PSRP (or SRP), we obtain the required 

PDF of its derivative  

                                           2* ,,,),( tttt   .                    (A1.37) 

Once again, we note that the procedure (A1.34) – (A1.37) can be applied to 

any stationary and pseudo-stationary random processes {i.e., random processes 

with a slowly varying PDF ρ(ξ,t)}, for which, as τ → 0, the δ-function takes the 

form (A1.20). 

To clarify the physical meaning of the scale parameter η, consider a station-

ary random process ξ(t) with a Gaussian distribution of the random variable ξ 
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where  ξ 
2
 and аξ are the variance and mathematical expectation of the process. 

Performing the sequence of operations (A1.34) – (A1.37) with the PDF 

(A1.38), we obtain the PDF of the derivative of this random process 
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On the other hand, using the well-known procedure (A1.4) – (A1.7) for a 

similar case, we obtain [18] 

                          ,2/exp
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                        (A1.40) 

where                                                σξ' = σξ /τcor,  

here τcor is the autocorrelation interval of the initial random process ξ(t). 

Comparing the PDF (A1.39) and (A1.40), we find that  

                                              
cor


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


22
                                           (A1.41) 

The Ex. (A1.41) was obtained for a Gaussian random process, but the stand-

ard deviation σξ and the autocorrelation interval τξ cor are the main characteristics 

of any SRP or PSRP. All other moments and central moments in the case of a 

non-Gaussian distribution of the random variable ξ(t) will make an insignificant 

contribution to the Ex. (A1.41). Therefore, it can be argued with a high degree of 

reliability that Ex. (A1.41) is applicable for a large class of stationary and pseudo-

stationary random processes. 

In quantum mechanics for the transition from the coordinate representation 

of the wave function of a pico-particle to its momentum representation, there is 

the procedure [10] 
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(A1.42)

,}/exp{)(
2

1
}/exp{)(

2

1
)(  









 dxxximxdxxipxp xx 











   (A1.43)       

where  = 1.055·10
–34

 J/Hz is the reduced Planck's constant, and it is also taken 

into account that the x-component of the particle momentum px is related with its 

speed vx (i.e., time derivative)  

                                   ,xm
dt

dx
mmvp xx

                              (A1.45) 
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In the case when 
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 with dimension (m

2
/s),                (A1.46) 

procedures (A1.34) – (A1.37) and (A1.42) – (A1.43) completely coincide. 

From Ex. (A1.46) it follows that Planck's constant can be expressed through 

the main averaged parameters σx and τx cor of a stationary (or pseudo-stationary) 

random process, which involves a randomly wandering pico-particle (for example, 

an electron). 

At the same time, the field of application of the procedure (A1.42) – (A1.43) 

is limited by the smallness of the reduced Planck’s constant . While the proce-

dure (A1.34) – (A1.37) can be applied for random stationary and pseudo -

stationary processes of any scale. Such random processes include chaotic oscilla-

tions of the center of mass of the nucleus of a biological cell, chaotic movements 

of the tip of a tree branch, chaotic change in the position of the center of mass of 

the planet's nucleus, etc. 

Let’s note the following intermediate results: 

1]. For a stationary and pseudo-stationary random process ξ(t) = х(t), the fol-

lowing procedure for obtaining the PDF ρ(x) derivative of this process can be 

applied. 

A given one-dimensional PDF ρ(x) of a stationary process [or a slowly vary-

ing PDF ρ(x,t) of a pseudo-stationary process] is represented as a product of two 

PA φ(x) or φ(x,t): 

                      xxx  )(   or      .,,),( txtxtx                   (A1.47) 

a) For a stationary random process (SRP), two Fourier transforms are per-

formed 
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and the desired PDF of the derivative of this process is determined 
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 (A1.52) 

σx is the standard deviation of the initial stationary random process x(t); 

τx cor is the autocorrelation interval of this process. 

In § 2.6 of the article [11, arXiv:2007.13527], the procedure (A1.47) –  

(A1.51) is applied to obtain the PDF ρ(x) of the derivative of stationary random 

processes with distribution laws: Gaussian, uniform, Laplace, Cauchy and sinus-

oidal.     

b) For a pseudo-stationary random process (PSRP), two Fourier transforms 

are performed                                                                                              (A1.53) 
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                                                                                                                     (A1.54) 

 

and the required PDF of the derivative of this process is determined at each time 

moment t 

                         2* ,,,),( txtxtxtx   .                        (A1.55) 

or                                  2* ,,,),( tvtvtvtv xxxx                          (A1.56) 

https://arxiv.org/abs/2007.13527


  42                                                                                                                                        М. Batanov-Gaukhman 

_______________________________________________________________________________ 

 

 

where                             
)()(

)(2
)(

2

tmt

t
t

corx

x
x







                                      (A1.57) 

σx(t) is the standard deviation of the initial pseudo-stationary random process x(t)   

         from its mean value at time t; 

τx cor (t) is the autocorrelation interval of this process at time t. 

2]. The procedure (A1.47) – (A1.52) up to the proportionality coefficient η 

coincides with the quantum-mechanical procedure (A1.42) – (A1.43) of transition 

from the coordinate representation to the impulse one. But the quantum - mechan-

ical procedure (A1.42) – (A1.43) was obtained using a rather unobvious (exotic) 

hypothesis about the possible existence of de Broglie's waves of matter (which 

were never discovered). While the procedure (A1.47) – (A1.52) is obtained on the 

basis of a detailed analysis of a differentiable random process with the only as-

sumption (which may be questioned) that the δ-function has the form (A1.20). In 

this regard, it is interesting to analyze which procedures for the transition from 

PDF ρ(x) to PDF ρ(x) can lead to other types of δ-function? 

Also, there is no need to use Louis de Broglie's hypothesis of the existence 

of matter waves to describe the diffraction of particles by a crystal. In the article 

[11, arXiv:2007.13527 ] it is shown that, based on the laws of geometric optics 

and the theory of probability, a formula was obtained for calculating the volumet-

ric scattering diagrams of particles on a multilayer periodic surface of a crystal. 

3]. In the case of studying the chaotic behavior of pico-particles, the ratio 

/m can be expressed through the main characteristics of the investigated random 

process (A1.46). In the author's opinion, this is a very important result, since it is 

practically impossible to estimate the real mass of a mobile elementary particle. 

Let’s recall that in physical reference books only the rest masses of elementary 

particles are given, which are determined indirectly on the basis of complex ex-

periments. Whereas it is much easier to obtain an estimate of the standard devia-

tion σx and the autocorrelation interval τx cor of a randomly wandering particle. It is 

https://arxiv.org/abs/2007.13527
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also important that the reduced Planck constant  loses its fundamental character 

and turns out to be the dimensional coefficient of proportionality between the par-

ticle mass and the ratio of the averaged characteristics of the random process.  

 

                                                                                                    Appendix 2 

A.2 Coordinate representation of the average speed 

      a chaotically wandering particle 

For stationary and pseudo-stationary random processes (see Appendix1), we 

prove the validity of equalities                                                                       (A2.1) 
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(A2.2) 

where n is an integer, positive degree; ηx is the scale parameter (A1.52). 

Experts in the field of QM are well aware of the proof of a similar expres-

sion 
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see, for example, [20]. However, in view of the importance of this proof for this 

article, we present it in a slightly modified form, as applied to the features of 

massless stochastic quantum mechanics (MSQM). 

Let’s use the Fourier transforms (A1.48) and (A1.48) 
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Substitute integrals (A2.3) and (A2.4) into the third part of Eq. (A2.1)                                                 
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It is easy to verify by direct verification that 
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(A2.6)  

Let's rewrite (A2.5) taking into account (A2.6) 
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We integrate the second integral in the integrand n times by parts, while we 

assume that ψ(x) and its derivatives vanish at the integration boundaries x = ± ∞. 

Performing these actions, we get  

             

,)()(
2

1
xjj

n

j

x

xv
i

i

xv
i

i

x

n

x dvdxx
x

iedxexv x

jx

x

jx

 










































 





   

(A2.8)    

or 
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(A2.9) 

Let’s change the order of integration in (A2.9), i.e. first we will integrate 

over vx 
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There is a delta function in that expression 
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Therefore, we represent it in the form 
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Using the properties of the δ-function, we finally write  
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thus, Ex. (A2.1) is proved for the case of a stationary random process (SSP). 

For a pseudo-stationary random process (PSSP), Ex. (A2.2) is proved simi-

larly. Performing operations similar to (A2.5) – (A2.15) using transformations 

(A1.53) and (A1.54), we obtain   
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Let's return to the consideration of the conditional PDF (A1.19) 
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where according to (A1.31) .
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For Δx = xj – xi  → 0  from (A2.14) we obtain 
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Let's take into account that 

                                            ,
2
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x t

v
                                          (A2.16) 

 

where tx is the kinetic energiality (21) equal to the total mechanical energiality εx 

(19) in the absence of the potential energiality ux (20) (i.e., at ux = 0). 

For some stochastic processes, it should be assumed that the diffusion coef-

ficient B is a complex number, i.e. B = iD. In this case, Ex. (A2.15) taking into 

account (A2.16) takes the form of the δε-function 
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Substitute this δε-function into an expression similar to (A.1.17) 
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Note that to obtain Ex. (A2.18), it is necessary to consider the evolution of a 

random process not in time (as shown in Figure A1.1), but in space. This is simi-

lar to Feynman's chaotic trajectories of a particle when it moves from one point in 

space to another [24].   

From Ex. (A2.18) by analogy with (A1.22) – (A1.25) follow the Fourier 

transforms 
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Considering 
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it can be shown that the average change in the kinetic energiality of a particle par-

ticipating in the PSSP has the form 
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and for n = 1, we have 
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The proof of the validity of Ex. (A2.22) is similar to the proof of Ex. (A2.2). 

The similarity of these proofs follows from the symmetry between pxx and Et (or 

vxx and εt) in the de Broglie wave 

      = exp–i(pxx – Et)/= exp–i(vxx – εt)m/= exp–i(vxx – εt)ηx.   (A2.24)                 

In the case when the scale parameter )(tx  changes with time, then you can 

write 
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At the same time, a situation is possible when the variance changes with 

time according to the law )( 0

2 ttx  , and the autocorrelation coefficient changes 

according to the same law )( 0ttcorx  . Then 
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In this case (A2.25) again takes the form (A2.23). 
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