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Abstract: Within the framework of the physics geometrization program, which includes the au-

thor's works [1, 2, 3], the physical and mathematical foundations of the Light-geometry of "vacu-

um" and the Algebra of signatures are considered. The vacuum is investigated by probing it with 

mutually perpendicular monochromatic light beams of different wavelengths. The result is a hier-

archy of nested 3D light-landscapes (i.e., m,n-vacuums). The non-curved and curved states of the 

local section of the m,n-vacuum are considered on the basis of the mathematical apparatus of the 

Algebra of signatures. The "vacuum condition" is formulated based on the definition of "vacuum 

balance". The inert properties of the m,n-vacuum are considered. A kinematic substantiation of 

the possibility of breaking the local section of the m,n-vacuum is given. On the basis of the 

foundations of the Algebra of signatures presented here in articles [2, 3], metric - dynamic models 

of all elementary particles included in the Standard Model are obtained. In this paper, new con-

cepts are introduced, therefore at the end of the article there is an "Index of definitions of new 

terms". 
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Introduction 

The thinkers of Western civilization, consciously or unconsciously, but consistently and systematically 

for several centuries, expelled GOD from science. 

When Nietzsche declared in "Fröhlichen Wissenschaft" (The Fun Science) that "Gott ist tot" 

("God is dead"), he only stated the completion of the process that began the builders of the Tower of 

Babel and was continued by the descendants of Amalek. 

The architects of the Tower of Babel secretly set out to gradually expel GOD, first from the first 

Heaven, then from the second Heaven, and thus reach the Upper Heavens. 

Amalek set himself a more pragmatic goal: to erase the Name of the ALMOST from the face of 

the earth. The Amalekites sent arrows into the sky. Angels caught these arrows, smeared them with 

blood, and brought them back to earth. When the Amalekites saw bloody arrows returning from Heav-

en, they rejoiced and exclaimed: "We have killed God!!!" 

The Leaning Tower of Pisa also has seven levels, which symbolize the seven Heavens. Legend 

has it that in 1589, Galileo Galilei and his student Vincenzo Viviani dropped two cannon balls of dif-

ferent sizes from the seventh level of this tower. When these stone cores simultaneously fell to the 

ground, the era of modern science began. 

mailto:alsignat@yandex.ru
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For 400 - 450 years since its inception, empirical science has allowed Western civilization to 

reach great ideological, theoretical, technical, technological heights. All this became possible thanks to 

the development of a rigorous empirical methodology for comprehending the laws of the surrounding 

world and the expansion of the possibilities of thinking due to the unrestrained (explosive) develop-

ment of abstract mathematics. 

All this was facilitated by the Christian Church. It was the Christian universities of Europe 

(Sorbonne, Pisa University, Cambridge and Oxford, Prague University, etc.) that limited the range of 

admissible studies. Everything that touched the "earthly" was allowed for research and comprehension, 

and everything "heavenly" was prohibited. 

The fires of the Holy Inquisition were burned out: from alchemy - chemistry, from astrology - 

astronomy, from metaphysics - physics, from theosophy - psychology, from healing - medicine, etc. 

But the triumph of scientific and technological progress gave rise to such a passionate wave of 

atheism and modernism in the West that this wave almost swept away Christianity itself from the face 

of the Europe. 

In the mid-1980s, scientific enthusiasm ran out of steam. Science found itself in a deep crisis. 

The cause of this crisis is rooted in the methodology of science itself. Science is effective only when its 

hypotheses and mathematical models can be tested in practice. But the advanced frontiers of science 

have approached such boundaries, beyond which it is practically impossible to look. 

Modern Science, in principle, is not able to cross the following boundaries: the size of the ob-

servable Universe is 45.7 billion light years, the minimum size of the observable space is 10
–20

 cm; 

Planck’s temperature 1.4⸳10
-32

 K; Planck’s time 5.4⸳10
-44

 s, etc. And even these boundaries are largely 

unattainable with the current level of technology. 

Science continues to improve technology, the mathematical apparatus is developing, but all this 

is within the framework of the boundaries released to it. Nothing fundamentally new has happened in 

science for 35-40 years. Of course, experts see progress in their narrow areas, but for ordinary people, 

these advances are too difficult, incomprehensible and not obvious. Such events, which admired all of 

mankind, such as: human spacewalk, atomic energy, decoding of the genetic code, polygraph, etc., 

have not taken place in science since the 70s of the last century. 

There is one more aspect that impedes the development of science very much - this is the con-

cept of "mass". It is quite obvious that in a completely geometrized physics the dimension of kilogram 

cannot be obtained in principle. The concepts of mass and dimension of the kilogram have penetrated 

all the pores of science. This intellectual "mud" will muddy everything, and dimensional constants, in-

cluding the dimension of kilograms, are extremely confusing. Quantum field theories have cleared 

space of massive aether. But the mass concentrated in point particles and disguised itself as dark matter. 
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If we do not completely cleanse physics of the concept of "mass", then science will never become so 

pure, transparent and elegant as to reach a new level of knowledge. 

Is there a way out of stagnation in science? 

Apparently, there is no way out of this impasse within science itself. Science without GOD has 

almost completely exhausted itself as a source of Progress and has become an ordinary craft. 

The main problem of modern science is that it comprehends only the outer side of this world. 

However, it is impossible to comprehend even this roughest world without examining its Spiritual 

structure. This world consists not only of material vessels, but also of the Spiritual Light that fills them. 

It is impossible to understand anything without looking inside the vessel. This is the root of the crisis of 

science, which denies the Spiritual side of the Universe. Pure positivism has led science to a dead end. 

The source of High Inspiration and further Intellectual Development of our civilization can 

serve as the ancient religious teachings about the Structure of the Universe. To escape from the "Pro-

crustean bed" of scientific limitations, scientists from different countries must turn to the religious and 

philosophical heritage of their peoples. 

 This article proposes to use the Universal Code, on the basis of which GOD unfolds the Uni-

verse we observe. 

The sages of TORAH (mekubalim) have preserved and passed on from generation to generation 

the Teaching of the ALMIGHTY, WHICH Was Opened on Mount Sinai. 

At the basis of this Teaching is the Great and Fearful Name of the ALMIGHTY  

 י-ה-ו-ה
This Great and Formidable Name of the CREATOR is an integral reflection of HIS Properties 

and Qualities, and at the same time it is the Foundation of the Universal Code from which all the origi-

nal elements of Creation unfold. 

Jews who serve these four (4 = ד) letters are named after the ancestor of one of the tribes of           

Israel י ה ו ד ה (Iguda). And this Great and Fearful Name is the source of the religion of Judaism. 

Orthodox Jews do not pronounce the Formidable Name י-ה-ו-ה. It is allowed to pronounce dis-

tortedly only the sequence of letters of this Name: Yud - Key - Vav - Key. 

In the Jewish tradition, preserved from the Sinai REVELATION, it is said that the Universe and 

all the creations that fill it are based on various Algorithms for Revealing this Great and Formidable 

Name י-ה-ו-ה (i.e. the Universal Code of all things). The Algorithms for Disclosing the Great Name            
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 ,include: Milui (Filling), Ribuy (Unfolding) י-ה-ו-ה

the Tree of Sephiroth (Branching of Qualities), 

Transmutation (Substitutions and Rearrangements 

of letters), Alphabet (Transliteration), Gematria 

(Numerical values of letters and words of Torah), 

Codes of TORAH, Partzufim (Images), Kilim (Ves-

sels) etc. Some of these Algorithms are disclosed 

in [4]. 

Nowadays, the Jews do not hide these Al-

gorithms for Revealing the Great Name of the 

ALMIGHTY, but one should always remember 

what the sages of TORAH said: “When we teach 

the TORAH in Malchut de Malchut (that is, at the 

most primitive, schematic level), this is an open 

Torah, not in IT yet. true Correction and Fear. " 

Judaism is based on the belief that this 

Universal Knowledge was communicated to the 

people from mount Sinai by the ALMIGHTY 

CREATOR of the entire Universe. And this 

Knowledge fills absolutely all creations of the Up-

per (Spiritual) and Lower Worlds. The Great 

Name of the GOD is ה-ו-ה- duY) .י- Kay - Vav - Kay) is present everywhere, since all creations have 

arisen due to the interweaving of various Algorithms of Revealing this Great Name. The Great and 

Formidable Name י-ה-ו-ה (Yud-Key-Vav-Key) is the Informational Basis of all. 

Possessing the Universal Knowledge of the TORAH the Jews treat Nature as a Living Book, i.e. 

as to the Realized TORA. Knowing the Source Alphabet, we can read the Book of LIFE at all Levels of 

Being. At the same time, the boundaries of human Cognition expand to Infinity, since HIMSELF 

CREATOR of Everything Told us from Mount Sinai on what Principles and Algorithms HE Use. "Si-

na" in translation from Hebrew means "Envy, Jealousy". This is the Jealousy of the ALMIGHTY, so 

that this Knowledge does not fall to the villains. 

TORAH Says that the ONE GOD Created Everything from Nothing (i.e. from the Void), and 

the materialists (the opponents of the Jews) argued that the basis of everything is the eternal first nature. 

 

Fig. 1.0.1. One of the algorithms for                                                  

disclosing a 4-letter Name called                                                        

"The Tree of Sephiroth"  
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This is the main source of the controversy between Orthodox Jews and materialistic Greeks (followers 

of the Aristotle school). 

The work presented below begins with the study of emptiness (vacuum), as the source of all el-

ementary particles and antiparticles from which the reality around us is built. 

The vacuum is investigated by probing it with beams of light directed from three mutually per-

pendicular directions. As a result, vacuum light geometry and the Algebra of signatures are developed, 

built on the basis of the Algorithms for Disclosing the Great Name י-ה-ו-ה (Yud - Key- Vav - Key). 

The Algebra of signatures is completely and versatile saturated with DIVINE REVELATION and re-

turns to its SOURCE: AL means EL (GOD), Gibor - Power.  

Thus, the light geometry of the vacuum and the Algebra of signatures are realized as a symbio-

sis of empirical knowledge of the world and DIVINE REVELATION in the form of the Algorithms for 

revealing HIS Great Name ה-ו-ה- duY) י- Key - Vav - Key). An analogy between the Algebra of signa-

tures (Alsigna) with the language of the Chinese Book of Changes and Indian chess is also shown. 

Within the framework of one article, it is impossible to state all aspects of the foundations of the 

proposed religious-scientific paradigm. Therefore, we refer those who are interested in Alsigna to two 

sites of the author: http://alsigna.ru/ where the religious and philosophical origins of the Algebra of sig-

natures (Alsigna) are stated; and http://metraphysics.ru/ where fully geometrized (massless) physics is 

presented from the standpoint of the Algebra of signatures.  

On this sites, based on the light geometry of the vacuum and Alsigna, metric-dynamic models 

of all particles (except for the Higgs boson) included in the Standard Model are proposed, the vacuum 

nature of gravity is described, a solution to the following problems is 

proposed: baryon asymmetry of the Universe, confinement, the exist-

ence of the second and third generations of quarks and leptons; the 

foundations of vacuum (zero) technologies were laid for obtaining 

free energy from vacuum, expanding and accelerating vacuum com-

munication channels, etc. 

The unification of Religious and scientific concepts into a 

single Knowledge is necessary not only in order to expand the circle 

of human knowledge, but also for the development of vacuum Ethics 

and vacuum Morality, without which the further development of hu-

man civilization is impossible. Careless and irresponsible handling of 

vacuum energy and other vacuum technologies can destroy not only 

our planet, but also lead to a catastrophe on a galactic scale. 

http://alsigna.ru/
http://metraphysics.ru/
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This work fits into a framework of a program, elucidated in [1, 2, 3], of the geometrization of 

physics, as set in motion by the mathematical works of William Kingdon Clifford  and continued into 

Einstein’s theory of General Relativity as well as the theories of John Archibald Wheeler. It discusses 

the physical and mathematical foundations of vacuum light-geometry and the Algebra of Signatures. 

The vacuum is investigated by probing it with mutually perpendicular monochromatic rays of light 

with different wavelengths. The result is a hierarchy of nested 3-D light landscapes “m,n-vacua”). We 

consider a locally uncurved and curved state of a vacuum region on the basis of the mathematical theo-

ry known as the Algebra of Signatures. A “vacuum condition” is formulated, based on the definition of 

the “vacuum balance”. Inert properties of the m,n-vacuum are considered. A kinematic basis for the 

possibility of discontinuities in a local neighborhood of a m,n-vacuum is introduced. On the basis of the 

foundations of the Algebra of Signatures described in [2, 3], metric-dynamic models of all elementary 

particles included in the Standard Model are obtained. In this paper new concepts are introduced, some 

of them with correspondingly new terminology. Therefore, at the end of the article a glossary of new 

terms is provided.   

 

1.1 Technical post-Newtonian vacuum 

When you fight monsters, beware that you do 

not become a monster yourself. And if you 

look at the Abyss for a long time, then the 

Abyss peers at you.  

                                                                                F. Nietzsche  

                                                                     “Jenseits Gut und Böse” 
                                                                                                                                                 (Beyond Good and Evil) 

 

In modern physics, a vacuum (from the Latin vacuus, meaning empty) is an extremely complex 

object, represented as a superposition of multiple layers of quantum zero-point oscillations (scalar, vec-

tor, spin, tensor, etc.) fields, or as a tapestry of extremely tightly wound superstrings.  

In this paper, we first return to the idea of an technically absolutely pure vacuum, as an empty 

space in which there are no material particles.  

To distinguish the objective empty space (that is, an absolutely pure Newtonian vacuum) from 

the various vacua of modern theories, for brevity we will call it a “vacuum” (with quotation marks).  

Definition 1.1 A “vacuum” is a real 3-dimensional empty space without particles, which is out-

side the consciousness of the observer.  

As a result of the development of light-geometry and the Algebra of Signatures (AS) (see Ap-

pendix), the “vacuum” model will become more and more complicated until many analogies are found 

with Einstein's vacuum, Dirac’s vacuum, Wheeler’s vacuum, De Sitter vacuum, Turner-Vilček vacuum, 

vacuum of quantum field theory and the secondary vacuum of superstring theory.  
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          1.2 Longitudinal flat bundles in mn-vacuum 

First, consider a 3-dimensional volume of the “vacu-

um”, in which there is no curvature. 

We use the experimental fact that in a “vacuum”, 

light beams (electromagnetic waves, i.e., photons) propagate 

at a constant speed c.  

If the “vacuum” does not change, then the line 

through which a photon passes (resulting in a ray of light) 

remains unchanged (Figure 1.2.1).  

Definition 2.1 A beam or ray of light at time t is a 

fixed line in the “vacuum”, along which a photon has passed 

in the time interval from the moment t0 of its emission to t. 

We divide the entire wavelength  range of electro-

magnetic (light) waves into sub-intervals from 10
m
 cm to 

10
m+1

 cm, where m ranges over the natural numbers. Such an 

interval will be denoted by “Δ10
m
  10

m+1 
cm”, or simply 

“Δ10
m
  10

n 
” where it is assumed (or stated for empha-

sis) that n = m + 1 and that the units are centimeters.  

If one sends monochromatic rays of light of wave-

length m,n (the range 10
m 

cm <
 m,n <10

n
 cm where n = m + 1) 

through a volume of a “vacuum” from three mutually per-

pendicular directions, then the screen can “visualize” a                

3-dimensional stationary light grid (Figures 1.2.1, 1.2.2) with the edge length, denoted εmn , of the cubic 

cell equaling approximately m,n. This 3-dimensional net will by convention be called a 3-D light land-

scape or mn-vacuum.  

Definition 2.2 A m,n-vacuum is a 3-D landscape in a “vacuum” which consists of a stationary 

intersection of monochromatic rays of light of wavelength range 10
m 

cm <
 m,n<10

n
 cm, where n = m +1 

(Figures 1.2.1 and 1.2.2). The thickness of the light rays, in comparison with the volume of the “vacu-

um” under investigation, tends to zero, so that the condition of applicability of geometrical optics is 

fulfilled.  

Sequentially analyzing the probed volume of “vacuum” monochromatic rays of light of wave-

lengths of all sub-bands 10
m 

cm <
  m,n < 10

n
 cm, we obtain an infinite number of nested m,n-vacua 

(Figure 1.2.3).  

 

 

Fig. 1.2.1. Stationary laser beams ren-

dered visible using a spray (see 

https://heatmusic.ru/product/ls-systems-

beam-green/ ) 

              

     
 
Fig. 1.2.2. The 3-dimensional lattice in a 

"vacuum", which consists of mutually 

orthogonal fixed beams of monochromatic 

light of wavelength mn , where the length 

of an edge of the cubic cell εmn is approx-

imately 10
2
 ∙mn 

 

εmn 

https://heatmusic.ru/product/ls-systems-beam-green/
https://heatmusic.ru/product/ls-systems-beam-green/
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Fig. 1.2.3. Discrete set of 3-D light landscapes mn-vacua) of the same 3-dimensional 

portion of a "vacuum," where mn > (m+1)(n+ 1) > (m+2)(n+ 2) > (m+3)(n+ 3) > (m+4)(n+ 4)... 

 

If m,n > (m+1)(n+1) , then the sizes of the cubic cells of the 3-D light landscapes (m,n-vacuа) 

obey εmn > ε(m+1)(n+1).  

Definition 2.3 A longitudinal bundle in a “vacuum” is a representation of an empty 3 - dimen-

sional space consisting of an endless sequence of discrete nested m,n-vacuа (3-D light landscapes).  

 

1.3 Lidar method of investigation of the “vacuum” 

The rays of light in a “vacuum” are not visible, so the human eye also does not record mono-

chromatic rays of light formed in a m,n-vacuum. Nevertheless, it can be visualized if, for example, aer-

osol particles are sprayed on laser light paths (Figure 1.2.1).  

A more correct method of investigating the metric-dynamic properties of a “vacuum” is elec-

tromagnetic carrier signals with wavelength m,n.  

Let the pulse of the electromagnetic signal, beamed by the lidar, propagate in the investi-

gated section of the “vacuum” to the reflector, then be reflected from it in the opposite direction 

(Figure 1.3.1), and finally the reflected signal enters the aperture of the lidar.  

The time interval dt = t2  t1 elapsed from the time t1 of the emission of a pulse until the moment 

t2 of the reception of the reflected signal is recorded by a precision clock.  
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Knowing the period of time dt, and assuming that 

the speed of light in a “vacuum” is a fundamental constant, 

it is easy to calculate the length of the path along which 

the light beam propagates from the antenna of the trans-

ceiver to the reflector by the formula      

                                       .
2

1
cdtdl                          (1.3.1)   

Suppose, too, that the distance measured with a 

ruler (Figure 1.3.1, 1.3.2) equals L.  

If dl = L, then this can be interpreted as a rectilinear 

propagation of the laser beam from the transmitter to the 

reflector and back.  

If dl ≠ L, then with fully adjusted lidar, this may 

correspond to one of the following cases: 

a) the monitoring portion of the “vacuum” is bent, so 

that the light beam propagates along a geodesic line in the 

curved 3-D landscape (Figure 1.3.2);  

b) in the volume under investigation there is a current 

(motion) of the “vacuum”, which carries the ray of light 

away from the direct path;  

c) there is both a curvature and a “vacuum” flow in this 

area. vature of the “vacuum”. For a more complete defini-

tion of its metric-dynamic properties, it is necessary to 

probe this section at least from three mutually perpendicu-

lar directions (Figure 1.3.3).  

 

1.4 Features of the lidar method 

The lidar method of sounding the “vacuum” contains two fundamental aspects that will later in-

fluence the development of light-geometry.  

First, note the important fact that the time interval dt, measured by the clock of lidar (Figure 

1.3.1), is not related to the region of the “vacuum” which is probed, since this region of the “vacuum” 

is located between the antenna aperture and the reflector, and the clocks are outside of this site. In other 

words, in the lidar method, time is an attribute of an outside observer, rather than an explored section of 

the “vacuum”. This means that the metric-dynamic state of the local section of the “vacuum” is deter-

 

 

Fig. 1.3.1. Laser scanning unit (Lidar) for               

probing a section of a "vacuum" 

 

 
 

Fig. 1.3.2. The propagation of a light beam 

along a curved portion of a "vacuum" 

 

         

Fig. 1.3.3. Scanning of the volume of the "vac-

uum" under investigation from three mutually 

perpendicular directions 
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mined by its curvature and/or motion, and not by a change in the flow of time, as it is treated in Ein-

stein’s General Theory of Relativity (GR).  

Secondly, it follows from the lidar method that the properties of the surrounding region have at 

least two conjugate 4-dimensional sides: “external” and “internal”.  

Let us explain this statement by way of an example. The basic lidar equation (1.3.1) can be rep-

resented in the form  

                                                                                   
с

dldl
dt br )( 
 ,                                                        (1.4.1)  

where dlr is the distance traveled by the light beam in the forward direction (from the antenna to the 

reflector of the lidar, Figure 1.3.1); dlb is the distance traveled by the light beam in the opposite direc-

tion.  

That is, in the lidar method, there are inevitably two beams: direct and reverse. They correspond 

to two conjugate sides: external and internal.  

During the time interval dt, the light beam travels a distance  

                                                               cdt = dl,                                                               (1.4.2)    

where dl = (dx
2
 + dy

2
 + dz

2
)
½ 

 is the length element in 3-dimensional “vacuum”.  

From (1.4.2) follows the expression   

 
                                                  c

2
dt

2
 = dx

2 
+ dy

2 
+ dz

2
.
                                                                              

(1.4.3)   

In turn, (1.4.3) is possible to write down in two ways:  

                                             ds
(–)2

 =  c
2
dt

2
 – dx

2 
– dy

2  
– dz

2
 = 0,                                            (1.4.4) 

                              ds
(+)2

 = – c
2
dt

2
 + dx

2 
+ dy

2 
+ dz

2
= 0,                                           (1.4.5) 

respectively, to direct the beam (or the outer side) and the returning light (or the internal side).  

The sum of the squares of the intervals (1.4.4) and (1.4.5) is equal to true zero:      

                            

  ½(ds
(–)2 

+ ds
(+)2

) = ds
(–)2 

+ ds
(+)2 

= (c
2
dt

2
 – dx

2 
– dy

2 
– dz

2
) + (– c

2
dt

2
 + dx

2 
+ dy

2 
+ dz

2
) = Ɵ.      (1.4.6) 

 

This circumstance makes it possible to remove one of the main problems of quantum field theo-

ry: the infinity of the energy of a physical vacuum, since in this case, the zero-point energy of each an-

ti-oscillator corresponds to the zero-point energy of a corresponding harmonic oscillator. 

Definition 4.1. “True zero” is defined as:    Ɵ = 0 – 0.                                                   (1.4.7) 

In a local region, oscillators and anti-oscillators can be shifted in phase or differ in amplitude 

and polarization, and therefore continuous fluctuations of the photon-anti-photonic vacuum condensate 

are possible at every point of space; however, on the average, in a given region of the “vacuum”, they 

completely annihilate one another.  
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1.5 Geodetic line in a m,n-vacuum 

Monochromatic light rays with different wavelengths m,n propagate “in a vacuum” with the 

same speed of light obeying the same laws of electrodynamics.  

Therefore, if the investigated section of the “vacuum” is not curved, then all 3-D light land-

scapes (m,n-vacuа) will differ from one other only by the length εmn of the edge of the cubic cell ≈ 

10
2m,n (Figure 1.2.2).  

However, if the “vacuum” is twisted, all m,n-vacua 

will differ from one other due to the fact that the light rays 

with different wavelengths have different thicknesses. Each 

3-D light landscape (m,n-vacuum) is unique (Figure 1.5.1), 

as all the irregularities of the “vacuum” are averaged within 

the thickness of the light beam.  

This conclusion is theoretically justified by the laws 

of geometrical optics, which take into account the resolving 

power of optical instruments [14, 17], and are confirmed by 

experimental data (Figure 1.5.2).    

A mn-vacuum is only a 3-D slice of a given curved “vacuum” region (Figure 1.5.1). For a more 

complete description of the curved section of the “vacuum”, it is necessary to obtain a set of                      

mn-vacuum nested in one another. 

In order not to lose information on a curved section of the “vacuum”, a sampling of the              

mn-vacuum must satisfy the Nyquist theorem (also known as the Nyquist Sampling Theorem, the 

Nyquist-Shannon Sampling Theorem or the Shannon Sampling Theorem, and in Russia as the Kotelni-

kov Theorem). In fact, this theorem is a condition of the “vacuum” quantization of nested 3-D light 

landscapes.  

 

 

   

 

 

                                             = 650 nm               = 390 nm       = 240 nm     = 170 nm 

Fig. 1.5.2. Experimental data on the laser beam thickness as a function of the wavelength  

of monochromatic beams (https://tech.onliner.by/2006/03/29/blu_ray_about) 

 

 

Fig. 1.5.1. A mn - vacuum embedded 

in a fd -vacuum, where mn  mn 

 

https://translate.google.com/translate?hl=en&prev=_t&sl=ru&tl=en&u=https://tech.onliner.by/2006/03/29/blu_ray_about
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Given the properties of propagation of rays of light (electromagnetic eikonal waves), we con-

clude that a curved 3-D light landscape (m,n-vacuum) is detected in the “vacuum” only when the wave-

length of the monochromatic probe light rays m,n is much smaller than the size of the curvature. In this 

case, the geometrical optics approximation m,n → 0 is applicable, so that the rays of light can be re-

garded as infinitely thin lines of light traversing the 3-D landscape (m,n-vacuum) (Figure 1.5.1).  

Therefore, for example, to illuminate a 3-D landscape at the level of fluctuations of the quark-

gluon vacuum condensate with characteristic curvatures in scales of 10
–13

 – 10
–15

 cm, it is necessary to 

use beams of light with wavelengths m,n > 10
–17

 cm. 

 

1.6 Sixteen rotating 4-bases 

We return to the ideal (uncurved) portion of one of the m,n-vacua (Figure 1.6.1).  

In an uncurved region of a “vacuum”, the 3-D light landscape differ from each other only in the 

cubic cell edge length mn ≈ 10
2
·m,n, so this item refers to the description of any of the m,n-vacua. 

We calculate how orthogonal 3-bases originate at the central point O of the given volume, the 

mn-vacuum (Figure 1.6.1).  

 

 

 

 

 

 

 

 

Fig. 1.6.1. Uncurved local luminous portion of a 3-D light landscape (m,n-vacuum), consisting of 

mo1nochromatic rays of light of wavelength m,n. The cells of such a 3-dimensional light grid 

are perfect cubes with an edge length mn of approximately 10
2
·m,n 

 

 

In an uncurved region of “vacuum”, the 3-D light landscape differ from each other only in the 

cubic cell edge length mn ≈ 10
2
·m,n , so this item refers to the description of any of the m,n-vacua.  

We calculate how orthogonal 3-bases originate at the central point O of the given volume, that 

is,  the mn-vacuum (Figure 1.6.1).  

Definition 6.1 An orthogonal 3-basis consists of three mutually perpendicular unit vectors em-

anating from a common point.  

εmn 
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If we classify 3-bases with respect to the same origin (point O in Figure 1.6.1) by taking into 

account their different directions, it turns out that they number 16 (Figure 1.6.2 a,b).  

 

         

       
           а) eight internal 3-bases                            b) eight external 3-bases                        c) adjacent cubic cells 

                                                    

Fig. 1.6.2. Sixteen 3-bases about a central point O in the 

                                                    s1ection of “vacuum” under investigation 

 

Of these, eight 3-bases belong to the cubic cell itself (Figure 1.6.2a), and the eight opposite             

3-antibases belong to adjacent cubic cells (Figure 1.6.2b,c).  

Any movement in the “vacuum” must be accompanied by a similar anti-movement, this is 

called the “vacuum condition” in the framework of the Algebra of Signatures. So if one 3-basis (to-

gether with the cubic cell) rotates clockwise (Figure 1.6.2c), then this is possible only if the adjacent 

cubic cell (along with the 3-antibasis) likewise rotates counterclockwise, since there is no point of sup-

port in the “vacuum”.  

In connection with the foregoing, it is convenient to add all the 3-bases (Figure 1.6.2a) along the 

fourth time axis, and add the fourth opposite anti-axis time to the eight 3-antibases (Figure 1.6.2b).  

Thus, at the point O, a mn-vacuum (Figure 1.6.1) has 8 + 8 = 16 orthogonal 4-bases, as shown 

in Figure 1.6.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.6.3. Sixteen 4-bases about the point O obtained by adding a temporal axis 

to each of the eight 3-bases and eight 3-antibases 
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Sixteen 4-bases (Figure 1.6.3) can be obtained within a local “vacuum” area using the lidar 

sensing method. In Section 1.3, it was shown that for a determination of the metric-dynamic properties 

of the “vacuum” in the neighborhood of point O, lidar signals (monochromatic light rays) should come 

from at least three mutually perpendicular directions (Figure 1.3.3).  

Let point O be the origin for six monochromatic rays of light with circular polarization (two on-

coming beams of light with three mutually perpendicular directions, as in Figure 1.6.4).  

For example, consider a pair of opposing light beams propagating towards each other along the 

x-axis (Figure 1.6.4). Let the polarization of the light beam under consideration be given by the electric 

field vector Ex
(+)

, and the polarization anti-light by the 

electric field vector Ex


. These vectors are described by 

the complex expressions [9]:  

 
)()()()()(

)()(~ xktii

ym
xktii

zmx
xxyxxz eeEieeEE








,       (1.6.1)

 
 

)()()()()(
)()(~ xktii

ym
xktii

zmx
xxyxxz eeEieeEE








,     (1.6.2)  

whereby Ezm
(+)

 is the projection vector of Ex
(+)

 onto the  z-

axis; Eym
(+)

 is the projection vector Ex
(+)

 onto the y-axis; 

Ezm
  

is the projection vector Ex


 onto the z-axis; Eym
 

is 

the projection vector Ex


 onto the  y-axis, where:   is the 

angular frequency of the light; kx is the wave vector pro-

jection onto the x-axis; xz
(+)

, xy
(+)

 are the phase orthogo-

nal components of a wave propagating in the forward          

x-axis direction; xz


, xy


 are the phase orthogonal 

components of a wave propagating in the opposite x-axis 

direction.  

Of the six rotating electric field vectors shown in 

Figures 1.6.4 and 1.6.5, we can form 16 rotating 3-bases. 

Of these, eight 3-bases are rotated in a clockwise direction; 

eight other 3-bases are rotated counterclockwise as shown 

in Figure 1.6.3.  

Let us briefly explain how the fourth axial time ax-

is was introduced into each 3-basis. If the frequencies of 

all three probe monochromatic rays arriving at the point O 

 

Fig. 1.6.4. Polarization of light and anti-light 

rays coming to a point from three mutually 

perpendicular directions 

 

 

 

Fig. 1.6.5. Two 3-bases, consisting of vectors of 

electric fields Ex
(+)

, Ey
(+)

, Ez
(+)

 and 

Ex
()

, Ey
()

,
 
Ez

() 
rotating in opposite directions 

around the point O 
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under investigation (Figure 1.6.4) with the three orthogonal directions being the same x = y = z, 

then their electric vector Ei
(±)

 at this point is rotated with the same angular velocity  

x.                                                                                 (1.6.3)  

Together these three electric field vectors Ei
(±)

 form an orthogonal 3-basis of an electric field, 

constantly rotating at an angular velocity of (1.6.3), which implies the need to maintain the axis of 

time / = t.  

Thus, the lidar sensing method of a “vacuum” in the neighborhood of a given point O leads to 

the same sixteen 4-bases as shown in Figure 1.6.3. But in this case the reference vectors with 4-bases 

make up the electric field vector Ei
(±)

. 

The Great Four-letter Name of ALLHIGHEST GOD  ה-ו-ה  manifests (Yud-Kay-Vav- Kay) י-

itself in the structure of light many times and variedly. 

In order not to use the Great Name of GOD in vain, Algebra of signature uses trans-literature: 

ה-ו-ה                                             H V H I i ,                                         (1.6.4)   ≡  י-

where the letter i corresponds to the end (tip) of the letter י (Yud), which corresponds to the fifth gener-

alizing element. 

There is a complete analogy of the Name H'VHI with the laws of light propagation: 

1) The number of letters of the Name and Anti-Name coincides with the number of terms in the 

law of propagation of light 

                                                                    H        V        H           I           i   

                                     ds
(+)2  

= dz
2 

+ dy
2 

+ dx
2 

– c
2
dt

2
 = 0                                                 (1.6.5) 

 

                                            i              I           H         V        H  

                                       0  =  c
2
dt

2
 – dx

2 
– dy

2 
– dz

2
 = ds

(–)2
                                             (1.6.6)                                 

2) The vectors of the eclectic E and magnetic H fields are expressed in terms of 4 components 

of the vector potential Аi (, А1, А2, А3)  I H V H' 

                                        grad
t

A

c
E 






1
,       ArotH  .                                       (1.6.7)   

3) Wave equation 

                          0
1

2

2

22

2











tcx

k

i

k 
,   where  k = 0, 1, 2, 3  I H V H',                         (1.6.8)     

describing the propagation of a ray of light (electromagnetic wave), admits four types of solutions 

(traveling waves): 
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                   I   )}({exp1
)1(

1



 rktiak      with the stignature {– +}; 

                   H   )}(exp{2
)2(

1



 rktiak 
 
with the stignature {+ –};                               (1.6.9) 

                   V   )}({exp3
)1(
2



 rktiak 
 
with the stignature {– –}; 

                    H   )}({exp4
)2(

2



 rktiak  with the stignature {+ +}, 

where   k  is the wave vector (| k | = 2 /);                                                                       I 

            r  is a vector specifying the direction of propagation of the light ray;    H 

              is cyclic frequency of harmonic oscillation;                                        V 

            аi  is the amplitude of the corresponding wave.                                       H    

 

1.7 Subcont and antisubcont 

An important aspect of the theory developed here is the assertion that the object of research is 

the three-dimensional volume of the “vacuum” (Figure 1.2.2). From this postulate follows the basic 

formula of affine light geometry (1.4.2)      

                                 cdt = dl = (dx
2
 + dy

2
 + dz

2
)
½
 = |idx

 
+ jdy

 
+kdz|,                               (1.7.1)  

where i, j, k are the standard mutually perpendicular unit vectors, and the basic formula of metric light 

geometry (1.4.3) is 

                                                  c
2
dt

2
 = dx

2
 + dy

2
 + dz

2
 
                                                                               

(1.7.2)  

the transformation of which leads to a system of two conjugate metrics (1.4.4) and (1.4.5):  

ds
(–)2

 =    c
2
dt

2
 – dx

2 
– dy

2  
– dz

2
 =   dx0

2 
– dx1

2 
– dx2

2 
– dx3

2
 = 0  with  signature (+ – – –);        (1.7.3)         

ds
(+)2

 = – c
2
dt

2
 + dx

2 
+ dy

2 
+ dz

2
 = – dx0

2 
+ dx1

2 
+ dx2

2 
+ dx3

2
 = 0 with signature (– + + +).        (1.7.4) 

From this system of equations follows two “technical” conclusions:  

1. The quadratic forms (1.7.3) and (1.7.4) can be interpreted as a single metric of two four-

dimensional sides of the same 4 + 4 = 8 = 2
3 

- dimensional metric space, which will be called a              

“2
3
-m,n-vacuum region“.  

Definition 1.7.1 A 2
k
-m,n-vacuum region  is an auxiliary logical “structure”, meaning a space 

with 2
k
 mathematical measurements (where k = 3, 4, 5, ... , which are “realized” out of  a “vacuum” 

by probing it with direct and inverse monochromatic rays of light with a wavelength m,n. The  simplest 

2
3
-m,n-vacuum region has two “sides”:  

 a 4-dimensional space with the Minkowski metric (1.7.3) and the signature ;  

 a 4-dimensional Minkowski metric anti-space with (1.7.4) and the signature ( + + +).  
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Algorithms of the transition from formal parameters to 

2
k 

mathematical measurements of the physical quantities char-

acterizing the 3-dimensional volume of a “vacuum” are dis-

cussed below.  

Although a 2
3
-m,n-vacuum region is a purely logical       

4 + 4 = 8 - dimensional structure, the physical consequences 

can be deduced from this. We explain this using the following   

2 + 2 = 4 - dimensional example.  

On a sheet of paper (whose thickness can be ignored) 

there are two 2-dimensional pages (Figure 1.7.1). There-

fore a sheet of paper can be regarded as an analogue of a             

2 + 2 = 4 -dimensional region.  

If the paper is not deformed, then both sides in terms of geometry are virtually identical. 

However, if the sheet is bent, then on one of its 2-dimensional sides all its elementary areas will 

widen slightly, and on the other, conjugate, 2-dimensional side, all elementary areas will slightly shrink. 

Similarly in the curved portion of the “vacuum”, according to the “vacuum condition”, they oc-

cur simultaneously as local compression and rarefaction regions, which automatically takes into ac-

count the “bilateral” view of its 4 + 4 = 8 - dimensional metric space.  

Taking into account the thickness of the sheet of paper, then as part of this characterization there 

arises an elementary cube, situated between the two sides of the sheet.   

In this case, as will be shown below, it will be necessary to consider the continuous region with 

4×16 = 8×8 = 64 mathematical dimensions. To continue with an even finer consideration for a                  

16 × 16 = 256-dimensional region, or even further to higher dimensions, it is necessary to regard a           

2
k 
-dimensional mathematical space (where k → ∞).  

Thus, in light-geometry, a “vacuum” has only three physical spatial dimensions and, associated 

with an observer, one temporal dimension, as well as 2
k 
mathematical (i.e., formal or technical) meas-

urements, where k = 2, 3, ... , ∞; all this depends on the consideration of the subtleties of the given vol-

ume of the “vacuum”.  

When the problem can be reduced to a two-sided consideration of a 2
3
-m,n-vacuum region, then 

for clarity it serves to introduce the following notation:  

Definition 7.2 The “outer” side of a 2
3
-m,n-vacuum region (or subcont) is a 4-dimensional re-

gion, local metric-dynamic properties of which are given by the metric   

 

 

Fig. 1.7.1. Curved double-sided 

surface of a sheet of paper 
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                           ds
(+ – – –)2 

= gij
(–)

dx
i
dx

j    
with the signature  (+ – – –), 

                                            
(1.7.5) 

where                                                 












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
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)(
00

)(
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gggg

gggg

g ij                                                           (1.7.6)  

which is the metric tensor of the “outer” side of the 2
3
-m,n-vacuum region (or subcont).  

When  

                                                                                                     


























 

1000

0100

0010

0001

)()(

ijij ng                                   (1.7.7)  

then a “subcont” is synonymous with the 4-dimensional space with the Minkowski metric (1.7.3) and 

the signature .  

Definition 7.3 The “internal” side of a 2
3
-m,n-vacuum region (or antisubcont) is a 4 - dimen-

sional region, the local metric-dynamic properties of which are given by the metric             

                             ds
(– + + +)2

 = gij
(+)

dx
i
dx

j
,    with signature (– + + +),                             (1.7.8) 

 where                                





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
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gggg

g ij
                         (1.7.9)  

which is the metric tensor of the “external” side 2
3
-m,n-vacuum region (or antisubcont).  

When  

                                         





















 

1000

0100

0010

0001

)()(

ijij ng                       (1.7.10)  

the “antisubcont” is synonymous with the 4-dimensional Minkowski metric antispace described by 

(1.7.4) and the signature ( + + +).  

To shorten the exposition, we assigned terms to the two auxiliary concepts which were intro-

duced in Definitions 1.7.2 and 1.7.3. 

Definition 7.4 A subcont (abbreviation of “substantial continuum”) is a hypothetical continu-

ous elastic-plastic 4-dimensional pseudospace, whereby its local metric-dynamic properties are given 

by the metric (1.7.5).  
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Definition 7.5 An antisubcont (abbreviation of “anti-substantial continuum”) is a hypothetical 

continuous elastic-plastic 4-dimensional pseudospace, whereby its local metric-dynamic properties are 

given by the metric (1.7.8).  

The concepts subcont and antisubcont are auxiliary concepts of pseudo-4-dimensionality that 

are synonymous with, respectively, outer and inner sides of a 2
3
-m,n-vacuum region. These concepts 

are introduced only for convenience in order to regard various elastic-plastic processes occurring in the 

“vacuum”.  

                                         1.8 Algebra of stignatures 

The physical basis of a light-geometry “vacuum” were consid-

ered above. Next we will primarily be concerned with the formal 

mathematical and geometrical aspects of this theory.  

So as to not further complicate the formal mathematical appa-

ratus of the Algebra of Signatures, it should be remembered that the 

geodetic lines of the given 3-D light landscape (or m,n -vacuum) are 

infinitely thin monochromatic light beams having wavelengths m,n.  

Thus the main subject of an infinitely small 3-D cubic cell 

m,n-vacuum in the vicinity of the point O (Figure 1.6.1, 1.6.2.), each corner of which is connected by 

two rotatable 4-bases, is shown in Figure 1.6.3.  

Each of the sixteen 4-bases imparts the direction of the axes in 4-dimensional affine space with 

special characteristics, which together will be referred to as the associated stignature.  

To introduce a description of stignature affine space, we first define the concept of base. We 

choose from the sixteen 4-bases shown in Figure 1.6.3 a preferred 4-basis ei
(5) 

(e0
(5)

, e1
(5)

, e2
(5)

, e3
(5)

) 

(Figure 1.8.1) and conditionally accept that the directions of all its unit basis vectors are positive        

                       ei
(5)

(e0
(5)

,e1
(5)

,e2
(5)

,e3
(5)

)  =  (+1, +1,+ 1, +1)  {+ + + +}.                           (1.8.1) 

Here we introduce a shorthand notation {+ + + +}, which will be called a “stignature” affinity 

(vector) space defined by the above 4-basis, hereafter designated e
(5)

.  

Definition 8.1 A “base” is one of the sixteen 4-bases, as shown in Figure 1.6.3, in which the di-

rection of all 4-unit vectors are denoted as positive, so the base always has stignature {+ + + +}.  

An arbitrarily chosen “base” (4-basis e
(5)

) of all the 4-bases shown in Figure 1.6.3 have the fol-

lowing signs:         

 

 

 

 

Fig. 1.8.1. Base with stignature   

                {+ + + +}  
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                                                                                                                                      Table 1.8.1                                                                                                                      

 

Definition 8.2 A “stignature 4-base” is a set of characters corresponding to the directions of its 

reference vectors with respect to the directions of the reference “base vectors“.    

All stignatures in Table. 1.8.1 can be combined into a 16-component matrix:  

            
       
       
       
        






























33231303

32221202

31211101

30201000

)(a
iestign  .                         (1.8.2)  

This matrix represents a single mathematical object with unique properties. Here are some of 

them:  

1. The sum of all 16-stignature and (1.8.2) equals the zero stignature  

                              {+ + – +}  +  {+ – – –}  +  {+ + – –} + {+ – – +} +  

                         +  {+ + + +}  +  {+ – + –}  + {+ + + –}  + {+ – + +} +                             (1.8.3)                          

                         +  {– + – +}  +  {– – – – }  + {– + – –}   + {– – – +} + 

                         +  {– + + +}  +  {– – + –}  +  {– + + –}  + {– – + +} = {0000}.            

              4-basis                       Stignature                4-basis                       Stignature 

 

ei
(1) 

(e0
(1)

, e1
(1)

, e2
(1)

, e3
(1)

) = 

  =  (1,  1,  –1,  1)                  {+ + – +}      

 

 ei
(2) 

(e0
(2)

, e1
(2)

, e2
(2)

, e3
(2)

) = 

   =  (1,  –1,  –1,  –1)              {+ – – –}   

 

 ei
(3) 

(e0
(3)

, e1
(3)

, e2
(3)

, e3
(3)

) = 

     = (1,  1,  –1,  –1)                {+ + – –}     

 

 ei
(4) 

(e0
(4)

, e1
(4)

, e2
(4)

, e3
(4)

) = 

     = (1, –1, –1,  1)                  {+ – – +}   

 

 ei
(5) 

(e0
(5)

, e1
(5)

, e2
(5)

, e3
(5)

) = 

     = (1,  1,  1,  1)                     {+ + + +}    

 

 ei
(6) 

(e0
(6)

, e1
(6)

, e2
(6)

, e3
(6)

) = 

     = (1, –1,  1, –1)                   {+ – + –}   

 

 ei
(7) 

(e0
(7)

, e1
(7)

, e2
(7)

, e3
(7)

) = 

     = (1,  1,  1, –1)                    {+ + + –}     

 

 ei
(8) 

(e0
(8)

, e1
(8)

, e2
(8)

, e3
(8)

) = 

     = (1, –1,  1,  1)                    {+ – + +} 
 

ei
(9) 

(e0
(9)

, e1
(9)

, e2
(9)

, e3
(9)

) = 

   = (–1,  1, –1,  1)                  {– + – +}                

   

ei
(10) 

(e0
(10)

, e1
(10)

, e2
(10)

, e3
(10)

) = 

    = (–1,  1,  –1,  –1)               {– – – –}  

   

ei
(11) 

(e0
(11)

, e1
(11)

, e2
(11)

, e3
(11)

) = 

    = (–1,  1,  –1,  –1)               {– + – –}   

 

ei
(12) 

(e0
(12)

, e1
(12)

, e2
(12)

, e3
(12)

) =  

     = (–1, –1, –1,  1)                {– – – +}    

 

ei
(13) 

(e0
(13)

, e1
(13)

, e2
(13)

, e3
(13)

) =  

     = (–1,  1,  1,  1)                  {– + + +}   

 

ei
(14) 

(e0
(14)

, e1
(14)

, e2
(14)

, e3
(14)

) =  

     = (–1, –1,  1, –1)                 {– – + –}   

 

ei
(15) 

(e0
(15)

, e1
(15)

, e2
(15)

, e3
(15)

) = 

    = (–1, 1, 1 –1)                      {– + + –}  

 

ei
(16) 

(e0
(16)

, e1
(16)

, e2
(16)

, e3
(16)

) =  

    = (–1, –1,  1,  1)                   {– – + +} 
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2. The sum of all 64 characters included in the matrix (1.8.2) is equal to zero (32 “+” 32 + “” = 0).  

3. There are four possible combinations of  binary characters:  

                

                                                                   


















































 IHVH ,                                     (1.8.4) 

 

or in the form of a transposed binary characters : 

 

                           IHVH .                              (1.8.5) 

 

Various combinations of binary characters form realizations with stignature 16:   

                                                                                                                                             (1.8.6) 

              

}.{};{};{};{

};{};{};{};{

};{};{};{};{

};{};{};{};{





















































































































































































































HHHVHHHI

VHVVHVIV

HHVHHHIH

IHVIHIII

  

 

 

The light-geometry of the "vacuum" is built on the basis of the Algorithms of Disclosure of the 

Great Name of GOD ה-ו-ה  .[4] (Yud-Key-Vav- Key) י-

One of the forms of the disclosure of the Name (H V H I i) is the "Tree of the ten Sephiroth", 

which can be obtained by squaring a two-row matrix: 

               






























































































































































VVHV

VHVI

VHHH

HHIH

HVHH

HHHI

IVHI

IHII

VH

HI
V

VH

HI
H

VH

HI
H

VH

HI
I

VH

HI

VH

HI

VH

HI
2

  (1.8.6b) 
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The components of this matrix correspond to 10 Sephiroth 

 

                                                         i (коц)                         II                           Keter              

                     

                                           I                      HH                     Hochma                      

 

                                      H                         VV                            Bina                                                     (1.8.6c)   
 

                                                                V              IV, IH, IH, VH, VH, HH              Tipheret *  
                                                                                            VI, HI, HI, HV, HV, HH             

                              

                                      H                      HH                          Malchut               
 

 

where Tipheret * consists of six Sephiroth: 

 

                       Chesed (IV = VI) Gvuga (IH = HI) Tipheret (I H = H I)                         (1.8.6d) 

                      Netzach (VH = HV) Hod (V H = V H ) Yesod (H H = H H) 

 

4. Using the Kronecker product, the square of the matrix with two rows of binary signatures forms a 

matrix composed of sixteen stignatures (1.8.2):  

                               
   
   

       
       
       
       








































2

                    

(1.8.7) 

where is the symbol for the Kronecker product.  

5. If the matrix (1.8.6) is assigned units, then we get a double-row matrix  

 

                                                
























































































11

11

11

11

11

11
;

11

11

11

11

11

11

11

11

11

11

                 (1.8.8)  

                                and  

                                     

.
11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11































































 







 













                      (1.8.9)  
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Eight of them:  

                                           


































































 


















11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

         (1.8.10)  

are Hadamard matrices, as they satisfy  

                                                      .
10

01
2)2()2( 








ТНН             (1.8.11)  

When employing Kronecker graphs, any of the matrices (1.8.10) again produces a Hadamard 

matrix H(n), satisfying the following condition:  

                                                       ,)()( nInНnН Т            (1.8.12)  

where the I - diagonal unit matrix of dimension n is:  

                                                     .

1000

0.........

0...10

0...01





















I                                 (1.8.13)  

For example,  

             



























































































































1111

1111

1111

1111

11

11
1

11

11
1

11

11
1

11

11
1

11

11

11

11

11

11
)2(

2

2H
          (1.8.14)  

             



































































































11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

1111

1111

1111

1111

11

11

11

11
)2(

3

3H
         (1.8.15)  

and so on according to the algorithm  

                                      Н(2)
k

 = Н(2
k
) = Н(2)  Н(2)

k-1
 = Н(2)  Н(2

k-1
).                              (1.8.16) 

5. The “base”, shown in Figure 1.8.1, is selected arbitrarily. If you select a different “base” out 

of the 4 bases, as shown in Figure 1.6.3, the signs in the stignature matrix (1.8.2) will be swapped, but 

its properties do not change. This kind of related individual invariance properties of the m,n-vacuum   

will be discussed later.  
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6. Sixteen 4-bases (given in Figure 1.6.3 and Table 1.8.1) correspond to the 16 types of “color” 

quaternions:                                                                                    

                                                                                                                                         (1.8.17) 

 

  

 

In [2, 5] it is shown that “color” quaternion correspond to the “color” of QCD. By direct calcu-

lation it is easy to see that the sum of all 16 types of “color” quaternions (1.8.17) is equal to zero  

                                                             ,0
16

1


k

kz                                                             (1.8.18)  

that is, a superposition of all types of “color” quaternions is balanced with respect to zero.  

7. The stignature matrix (1.8.2) can be presented in the form of the sum of diagonal and anti-

symmetric matriсes 

              

 
 

 
 

     
     
     
      


























































0

0

0

0

000

000

000

000

       (1.8.19)  

 

8. Let such a matrix, composed of four elements labeled a, b, c, d be written as 

 

                                                                           





























abcd

badc

cdab

dcba

C ,                                                (1.8.20)   

 

 

z1 = x0 + ix1 + jx2 + kx3        {+ + + +} 

 

z2 = –x0 –ix1 – jx2+ kx3       {– – – +} 

  

z3 = x0 – ix1 – jx2+ kx3        {+ – – +} 

 

z4 = –x0 – ix1+ jx2–kx3        {– – + –} 

 

z5 = x0 +ix1 – jx2 –kx3         {+ + – –} 

 

z6 = –x0 + ix1 – jx2–kx3        {– + – –} 

 

z7 = x0 – ix1+ jx2 – kx3         {+ – + –} 

 

z8 = –x0+ix1 + jx2 + kdx3      {– + + +} 

 

  

 {– – – –}    z9 = –x0 – ix1 – jx2 – kx3  

 

 {+ + + –}    z10 = x0 + ix1 + jx2 – kx3             

 

 {– + + –}    z11= – x0 + ix1+ jx2– kx3  

 

 {+ + – +}    z12= x0 + ix1 – jx2 + kx3  

 

 {– – + +}    z13= –x0 – ix1 + jx2+ kx3  

 

 {+ – + +}    z14= x0 – ix1 + jx2 + kx3 

 

 {– + – +}    z15 = –x0 + ix1– jx2+ kx3            

 

 {+ – – –}    z16 =  x0 – ix1 – jx2 – kx3     
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Multiplication of a matrix of the form (1.8.20) with one of the Hadamard matrices (1.8.14) 

gives a matrix composed of linear forms with various stignatures     


































































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)2( 2   (1.8.21)                                                                                                                 

Definition 8.3 "The Yi-Ching analogy" represents an analogy between the Algebra of Stigna-

ture and the "Yi-Ching" (the Chinese "Book of Changes").  

- In the Book of Changes there are two fundamentals: «––» (Yang) and «– –» (Yin); Algebra of 

Stignature contains two signs: «+» (plus) and «–» (minus). 

- In the Book of Changes there are 8 trigrams (Figure 1.8.2a); in Algebra of Stignature we have 

eight 3-bases (Figure 1.6.2a) and/or eight 3-antibases (Figure 1.6.2b). 

 

 

 

 

 

 

 

 

 

                    а)                                                                 b)                                                                  c) 

Fig. 1.8.2. The eight trigrams and sixty four hexagrams of the Chinese Book of Changes 

http://hong-gia-ushu.ru/vu-chi/traktat-vo-kyk-vu-chi-avtor-li-khong-tai 

 

- In the Book of Changes the combinations of two trigrams give 64 hexagrams (Figure 1.8.2 b, c); 

in Algebra of Stignature we have 64 combinations (addition or multiplication) of each of the 3-bases 

with each of the 3-antibases.        

- The dialectics of the Book of Changes is based on combinations of the two opposite principles                 

«––» (Yang) and «– –» (Yin): 

                                           old Yang          old Yin        young Yang      young Yin 

                 

 

 

Similarly, in the Algebra of Stignatures the four binary combinations of signs «+» и «–» (1.8.5) 

are possible:                             {+ +}         {– –}           {+ –}           {– +}.     
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── 

─ ─ 
─ ─ 
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─ ─ 
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Heat 

Summer 

Fire 
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Cold 

Winter 

Earth 

… 

Warmly 

Spring 

Water 

    …  

Cool 

Fall 

Air 

… 

http://hong-gia-ushu.ru/vu-chi/traktat-vo-kyk-vu-chi-avtor-li-khong-tai
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1.9 Stignature spectral analysis 

We point out the possible use of the Algebra of Stignatures to empower spectral analysis.  

Recall that in quantum physics, there is a procedure proceeding from the coordinate to the mo-

mentum representation. Let there be a function of space and time ρ (ct,x,y,z). This function is represent-

ed as a product of two “amplitudes” 

 

                                               ρ(сt,x,y,z) = φ(сt,x,y,z)·φ(сt,x,y,z).                                        (1.9.1) 

 

Further, two Fourier transformations are performed  

                          




 dzyxct
p

izyxctpppp zyxct )}(exp{),,,(),,,(


 ,                        (1.9.2) 

                          




 dzyxct
p

izyxctpppp zyxct )}(exp{),,,(),,,(*


                        (1.9.3)  

where  

p = 2η/– generalized frequency;                                                                                                (1.9.4) 

– wavelength;  

η  –  coefficient of proportionality (in quantum mechanics η = ħ = the reduced Plank constant);  

dΩ = cdtdxdydz – elemental 4-dimensional volume of space;  

ω  –  angular frequency;  

k  –  wave vector;  

                             ехр{i(   t – k r)} = ехр{i(2 /) (сt – x – y – z)} : direct wave;                    (1.9.5) 

                             ехр{i(– t + k r)} = ехр{i (2 /) (– сt+x+y+z)} : reflected wave.               (1.9.6) 

 

A pulse (spectral) representation of the function ρ(ct,x,y,z) is obtained by the product of the two 

amplitudes (1.9.2) and (1.9.3)  

                             ),,,(*),,,(),,,( zyxctzyxctzyxct ppppppppppppG   .                                (1.9.7) 

The spectral representation giving a balance of zero is thus achieved   

                                  (сt – x – y – z) + (– сt + x + y + z) = 0,                                            (1.9.8)   

which can be written as  

                                                            {+  –  –  –} 

                                                            {–  +  +  +}                                                          

                                                            {0  0  0  0}                                                               (1.9.9) 
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We now formulate the foundations of the spectral analysis of stignatures.  

In analogy to the procedure (1.9.1) to (1.9.7), we represent the function ρ(ct,x,y,z) as the product 

of the “amplitudes”  

  ρ(сt,x,y,z)=φ1(сt,x,y,z) φ2(сt,x,y,z) φ3(сt,x,y,z)×…×φ8(сt,x,y,z) =


8

1

),,,(
k

k zyxct .          (1.9.10) 

Instead of the imaginary unit i, present in the integrals (1.9.2) and (1.9.3), we consider the eight 

objects ζr (where r = 1, 2, 3, ... , 8), which satisfy the relations in a anticommutative Clifford algebra:  

                                                     ζm ζk  + ζk ζm = 2δkm ,                                                     (1.9.11) 

where δkm is the Kronecker delta (δkm = 0  when  m k  and  δkm = 1 when  m = k).  

Satisfying these requirements, for example, is the following set of 8 × 8 matrices of type:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

                                                                                                                                           (1.9.12) 
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In this case, δkm in (1.9.11) is the unit 8 8 matrix:  
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
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










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
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





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00000010

00000001

km

                                            (1.9.13)  

Feasible eight Fourier transforms would be  

                    




 dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,( 111


 ,                      (1.9.14)                

                   




 dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,( 222


 ,                      (1.9.15) 

                   




 dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,( 333


 ,                       (1.9.16) 

                   




 dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,( 444


 ,                       (1.9.17) 

                   




 dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,( 555


 ,                      (1.9.18)                  

                  




 dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,( 666


 ,                        (1.9.19) 

                  




 dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,( 777


 ,                        (1.9.20) 

                  




 dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,( 888


 .                         (1.9.21)  

 

where the objects ζm (1.9.12) perform the function of imaginary Clifford units.  

We then find eight complex conjugate Fourier transforms:  

                   





 dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,(* 111


 ,                         (1.9.22) 

                   





 dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,(* 222


 ,                       (1.9.23) 

                   





 dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,(* 333


 ,                       (1.9.24) 

                   





 dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,(* 444


 ,                      (1.9.25) 
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




 dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,(* 555


 ,                    (1.9.26)                  

                   





 dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,(* 666


 ,                     (1.9.27) 

                   





 dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,(* 777


 ,                    (1.9.28) 

                    





 dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,(* 888


 .                   (1.9.29) 

In analogy with Equation (1.9.6), spectral representation of the stignature of the function 

ρ(ct,x,y,z) is obtained by analysis of the eight amplitudes (1.9.14) to (1.9.21) and their eight complex 

conjugate amplitudes (1.9.22) to (1.10.29).  

                        




8

1

),,,(*),,,(),,,(

k

zyxctkzyxctkzyxct pppppppppppp  .                       (1.9.30)  

In this case there are 16 types of “color” waves (helices) with the corresponding stignatures   

  ехр{ζ1 2 / (  сt + x + y + z)} 
  ехр{ζ2 2 / (– сt –x – y  + z)}     
  ехр{ζ3 2 / (  сt – x – y  + z)}      
  ехр{ζ4 2 / (–сt  – x + y – z)}      
  ехр{ζ5 2 / (  сt  + x – y – z)}    
  ехр{ζ6 2 / (– сt + x – y – z)}     
  ехр{ζ7 2 / (  сt – x + y – z)}                                                                   
  ехр{ζ8 2 / (– сt+ x + y +z)}   
  ехр{ζ1 2 / (– сt –x – y – z)}     
  ехр{ζ2 2 / (  сt + x + y – z)}     
  ехр{ζ32 / (– сt + x + y – z)} 
 ехр{ζ4 2 / (  сt + x – y + z)}        
  ехр (ζ5 2 /(– сt – x + y + z)}  
  ехр{ζ6 2 / (  сt – x + y + z)}        
  ехр{ζ7 2 / (– сt + x– y + z)}                                                          
  ехр{ζ8 2 / (  сt – x – y – z)}   
 

{+   +  +   +} 

{–   –   –   +} 

{+   –   –   +} 

{–   –   +   –} 

{+   +   –   –} 

{–   +   –   –}          

{+   –   +   –}   

{–   +   +   +}                        

{–   –    –   –}                                                                 

{+    +   +  –} 

{–    +   +  –} 

{+   +    –  +}  

{–   –   +   +}  

{+   –   +   +}  

{–   +   –   +} 

{+   –   –   –}    

{0   0   0   0}+                                         

     (1.9.31)  

with analogous rankings  

  

 

 

 

 

  

{+  +  + +} 

{–  –  –  +}  

{+  –  –  +}  

{–  –  +  –} 

{+  +  –  –} 

{–  +  –  –} 

{+  –  +  –}  

{–  +  +  +} 

{0  0  0  0)+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

 

{–  –   –  –} 

{+  +  +  –} 

{–  +  +  –} 

{+  +  –  +} 

{–  –  +  +} 

{+  –  +  +} 

{–  +  –  +} 

{+  –  –  –} 

{0  0  0  0)+ 

= 0 

= 0 

= 0 

= 0                             (1.9.32) 

= 0  

= 0 

= 0 

= 0 

= 0 . 
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Thus, the spectral-stignature analysis is balanced with respect to zero.  

In an attempt to construct the theory using invariant local phase rotations (i.e. local gauge trans-

formations), it was shown in [2, 5] that 

e
iα(– сt+ x + y +z) 

= e 
ζ1 2 / (сt + x + y + z)

×е 
ζ2 2 / (– сt –x – y + z)

 × е 
ζ3 2 / (сt – x – y  + z) 

×е 
ζ4 2 / (–сt – x + y – z) 

×
    

 

         × е 
ζ5 2 / (сt  + x – y – z) 

×
 
е 

ζ6 2 / (– сt + x – y – z)
 × е 

ζ7 2 / (сt – x + y – z)
,                                     

e
iα( сt – x – y –z)

 =  e
–ζ1 2 / (сt + x + y + z)

×е
–ζ2 2 / (– сt –x – y + z)

 × е
–ζ3 2 / (сt – x – y  + z) 

×е
–ζ4 2 / (–сt – x + y – z) 

×
     

         × е
–ζ5 2 / (сt  + x – y – z) 

×
 
е

–ζ6 2 / (– сt + x – y – z)
 × е 

–ζ7 2 / (сt – x + y – z)
 
                                                

(1.9.33)
                            

               

a further development along these lines would be worthwhile as it might lead to a geometrized vacuum 

of QCD.  

1.10 Algebra of Signatures 

We proceed from affine geometry to metrics. For ex-

ample, consider the affine (vector) space with the 4-basis            

ei 
(7) 

(e0
(7)

,e1
(7)

,e2
(7)

,e3
(7)

) (Fig. 1.6.3) with stignature {+ + + }.  

We define this 4-vector space                                  

 ds
(7)

 = ei
(7)

dxi
(7)  

= e 0
(7)

dx0
(7)

 + e1
(7)

dx1
(7)

 + e2
(7)

dx2
(7)

 + e3
(7)

dx3
(7)

,
                         

  

                                                                                     (1.10.1) 

where dxi
(7) 

is the i-th projection of the 4-vector ds
(7) 

onto the 

axis xi
(7)

, the direction of which is determined by the basis vec-

tor ei
(7)

.  

Consider another 4-vector                                         

                             ds
(5)

 = ei
(5)

dxi
(5)

 = e0
(5)

dx0
(5)

 + e1
(5)

dx1
(5)

 + e2
(5)

dx2
(5)

 + e3
(5)

dx3
(5)

,                      (1.10.2) 

defined in an affine coordinate system x0
(5)

, x1
(5)

, x2
(5)

, x3
(5) 

 with the 4-basis ei
(5) 

(e0
(5)

, e1
(5)

, e2
(5)

, e3
(5)

) 

(Figure 1.6.3), with stignature {+ + + +}. We find the inner product of 4-vectors (1.10.1) and (1.10.2)
 
 

                 ds
(5,7) 2 

 = ds
(5)

ds
(7)

 = ei
(5)

ej
(7)

dx
i 
dx

j 
= 

                                                                                                            
 

                  = e0
(5)

e0
(7)

dx0dx0
 
+

  
e1

(5)
e0

(7)
dx1dx0

 
+

 
e2

(5)
e0

(7)
dx2dx0

 
+

 
e3

(5)
e0

(7)
dx3dx0

 
+

                                                                                                                                      

                  + e0
(5)

e1
(7)

dx0dx1
 
+

  
e1

(5)
e1

(7)
dx1dx1

 
+

 
e2

(5)
e1

(7)
dx2dx1

 
+

 
e3

(5)
e1

(7)
dx3dx1

 
+

                                 
              

      + e0
(5)

e2
(7)

dx0dx2
 
+

  
e1

(5)
e2

(7)
dx1dx2

 
+

 
e2

(5)
e2

(7)
dx2dx2

 
+

 
e3

(5)
e2

(7)
dx3dx2

 
+

               
(1.10.3)          

+ e0
(5)

e3
(7)

dx0dx3
 
+

  
e1

(5)
e3

(7)
dx1dx3

 
+

 
e2

(5)
e3

(7)
dx2dx3

 
+

 
e3

(5)
e3

(7)
dx3dx3.

   

For this case, the inner products of the basis vectors ei
(5)

ej
(7) 

are:    

when   i = j, e0
(5)

e0
(7) 

= 1,   e 1
(5) 

e1
(7) 

= 1,  e2
(5) 

e2
(7) 

= 1,  e3
(5)

e3
(7) 

= 1;  if  i ≠ j  then  ei
(5)

ej
(7) 

= 0.  

The expression (1.10.3) then appears as a quadratic form  

                ds
(5,7)2 

= dx0dx0
 
+ dx1dx1

 
+ dx2dx2

 
– dx3dx3

 
= dx0

2 
+ dx1

2 
+ dx2

2 
– dx3

2                       
(1.10.4) 

with signature (+ + + ).  

 

 

       а)  {+ + + +}            b) {+ + + –} 

  Fig. 1.10.1. Two 4-bases with                   

    different stignatures 
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Definition 10.1 A “signature” is an ordered set of signs of the corresponding coefficients of an 

associated quadratic form. 

To determine the signature of a metric space with the metric (1.10.4), instead of performing a   

inner product of vectors (1.10.3) of a stignature of 4-bases, it is possible to multiply the vectors from 

Figure 1.10.1, as follows:  

                                                     {+ + + +}          

                                                            {+ + +  –}                                                            (1.10.5)       

                                                             (+ + +  –)  

                

where the multiplication sign is produced by the following rules. The “numerators” (i.e., above the line) 

of (1.10.5) are multiplied by the signs located in a single column, and the result of this multiplication is 

written in the “denominator” (below the line) of the same column. The multiplication of signs obeys 

the following arithmetic rules:  

                         {+}  {+} = {+};         {–}  {+} = {–};                                   (1.10.6) 

                  I                   {+}  {–} = {–};         {–}  {–} = {+},                                  

                                                        for “vacuum”  

 

                          {+}  {+} = {+};        {–}  {+} = {–};                                   (1.10.7)                                                                                                          

                 H                               {+}  {–} = {+};         {–}  {–} = {–},        

                                            for non-commutative “vacuum” 

 

                          {+}  {+} = {–};        {–}  {+} = {–};                                   (1.10.8)                                                                                                           

                 V          {+}  {–} = {+};        {–}  {–} = {+},      

   

                              for non-commutative “anti-vacuum” 

                           {+}  {+} = {–};        {–}  {+} = {+};                                    (1.10.9)                                                                                                           

                 H                      {+}  {–} = {+};        {–}  {–} = {–}.        

                                                        for “anti-vacuum”  

In this work, generally only multiplication signs will be used (1.10.6) for a “vacuum”. However, 

it should be remembered that a more coherent theory would contain all four possible types of “vacuum” 

with the multiplication rules (1.10.6) to (1.10.9) and four possible factorials of zero: 0! = 1, 0! = 1,           

0! = i,  0! =  i, such that   

                1/4(0! + 0! + 0! + 0!) = (1–1) + i(1–1) = 0 + i0 = Ѳ – the complex conjugate true zero         

                                     0! 0! 0! 0! = 0!
4
 = 1·(–1)·i·(–i) = – 1.                                        (1.10.10)    
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The presence of four "vacua" with the rules of multiplication (1.10.6) - (1.10.9) was indicated 

through S.G. Prokhorov with the participation of V.P. Khramikhin and M.G. Ivanova. Through S.G. 

Prokhorov, it was also reported that these "vacuums" and "anti-vacuums" are, in a way, supports for 

each other in the "Shaky Emptiness", i.e. ensure the stability of the Vacuum. 

 

Lurianic Kabbalah says (see on the website http://alsigna.ru/ § Blue Alsigna (Cosmogenesis), 

Section 2, p. The World of Assiya) that the basis of corporeality is 4 Elements (H’VHI) of the lowest of 

the Spiritual worlds - the world Asia: Element Ash (Fire), Element Ruach (Air), Element Mayim (Water) 

and Element Afar (Dust, Earth). Each of these 4 Elements is divided into ten Sephiroth (Qualities). In-

terlacing of the lowest of the 10 Sephiroth of each Element, i.e. Malchut de Esch (Kingdom of Fire), 

Malchut de Ruach (Kingdom of Air), Malchut de Mayim (Kingdom of Water) and Madhut de Afar 

(Kingdom of Earth), forms the physicality of Domem (Silent). 

It can be assumed that the Silent Corporeality is the Emptiness of our world, and 4 vacuums 

(1.10.6) - (1.10.9) correspond to the Kingdoms of the 4 Elements: Fire, Air, Water and Earth. 
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Since the arithmetic in (1.10.5) are carried out in columns (and/or ranks), similar expressions 

will be called  ranked (“rank” in the sense of order in a system).  

Ranking of division of stignatures in a “vacuum” obey the multiplication rules (1.10.6) deter-

mined by the following arithmetic rules:  

                                        {+} : {+} = {+};        {–}: {+} = {–};         

                                        {+} : {–} = {–};        {–}: {–} = {+}.                                     (1.10.11)    

                                                                       

In this case, with the designated stignature ranks, the results would follow similarly to the above     

                                                              {– + – +}         

                                                              {+ + + –}                                                                                                        

                                                               (– + –  –):                                                 (1.10.12)  

 

whereby here “ranked” means division by the rules (1.10.11).  

Definition 10.2 “Ranking” denotes an expression that defines the arithmetic operation with 

stignatures of affine (linear) forms or with signatures of quadratic forms. The signs in the denominator 

after the brackets are ordered (...)+/ indicating what operation is performed with the characters in 

ordered columns and /or rows: (...)+ indicates addition, (...) indicates subtraction (...): indicates divi-

sion and (...)× indicates multiplication.  

The set (1.8.2) of stignatures whose elements are  

 

                                                                   (1.10.13)      

                                     

forms two separate Abelian groups, one over ranked multiplication operation, 

and one over the ranked division operation. This indicates the presence of un-

derlying symmetries in the foundations of the light-geometry developed here.  

  Proceeding in a manner analogous to the treatment of the vectors ds
(5) 

and ds
(7) 

(10.3), using scalar product pairwise among vectors from all 16 affine 

4-spaces with the bases as shown in Figure 1.6.3, we get 16 16 = 256 metric  

4-subspaces    

                                                   ds
(аb)2

 = ei
(а)

ej
(b)

dx
i(а)

dx
j(b)

,
                                                               

(1.10.14)      

where a = 1,2,3, ... , 16;  b = 1,2,3, ... , 16.  

 

       
       
       
       






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                                                                                                                                                  (1.10.15)  

 

 

 

 

 

 

 

 

 

 

 

 

Point O (Figure 1.6.1) belongs simultaneously to all of these 256 metric 4-subspace signatures 

(1.10.15), so it is a place where they intersect. It will be shown that the metric 4-subspaces have various 

topologies.  

A set of 256 metric 4-subspaces (4-cards) forms a single “atlas” with intersection at point O, 

and the total number of mathematical dimensions is 256 4 = 1024.  

The mathematical apparatus of the Algebra of Signatures developed here can be classified as a 

multi-dimensional theory. But light-geometry can be constructed in such a way that all the extra (auxil-

iary) mathematical measurements are reduced to three physical measurements of the “vacuum” and one 

temporal dimension, whereby the temporal dimension is associated with an observer.  

The Algebra of signatures (AS) is suitable for this, largely coinciding with the local (tetrad) 

formalism made reference to earlier, developed by E. Cartan, R. Vaytsenbek, T. Levy-Chivita,              

G. Shipov [15] and is often used in the framework of Einstein’s differential geometry theory of “abso-

lute parallelism” [16, 18]. 

The difference between AS and the tetrad method in general relativity (GR) is that at each point 

of the 3-dimensional manifold (the “vacuum”), not just two systems of four reference points (tetrads) 

and one metric ds
(аb)2 

= ei
(а)

ej
(b) 

dx
i(а)

dx
j(b)

 with the signature (+ ) or with the signature ( + + +) is 

given, but rather sixteen 4-bases (or 4-frames, or tetrads) (Figure 1.6.3), whose scalar products form 

256 metrics (1.10.14) with the signatures (1.10.15). 

{+ – + +}                                                          

{+ + + –} 

 (+ – + –) 

{+ + + +}                                                   

{+ – + –} 

 (+ – + –) 

{– + + +}                                                   

{+ + + –} 

 (– + + –) 

{+ + + +}                                          

{– + + –} 

 (– + + –) 

 

{+ – – +}                                                   

{+ + + –} 

 (+ – – –) 

 

{+ + – +}                                                   

{– + + –} 

 (– + – –) 

 

{– + + +}                                                   

{– + + –} 

(+ + + –) 

 

{+ – + –}                                                   

{+ – + –} 

(+ + + +) 

 

{+ – – –}                                                   

{+ + + –} 

 (+ – – +) 

 

{+ + – +}                                                   

{– + – –} 

 (– + + –) 

 

{– + – +}                                                   

{– – + –} 

 (+ – – –) 

 

{+ – + +}                                                   

{+ – + –} 

 (+ + + –) 

… … … … 

 

{+ + + –}                                                   

{– – + –} 

 (– – + +) 

{– + – –}                                                   

{+ – + –} 

 (– – – +) 

{– + + –}                                                   

{+ – + –} 

 (–  – + –) 

{+ – – +}                                                   

{– + + –} 

 (–  – – –) 
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1.11. The first step of compactification    

of additional measurements 

One of the main problems of any multi-

dimensional theory is compactification (aka Fold-

ing) of additional mathematical measurements to 

the observed three spatial and one temporal di-

mensions. The Algebra of Signatures faces a simi-

lar problem.  

Note that the 16 types of scalar products of 

4-bases, as shown, for example, in Figure 1.11.1, 

result in sixteen quadratic forms (metrics) (see also 

1.10.14) with the same signature ( +  +).  

After averaging metrics with identical sig-

natures out of 256 subspaces, we end up with only 

256/16 = 16 types of 4-space with the metrics:                                                                               

                         

ds
(+ + + +)2 

=
      

dx0
2 

+ dx1
2 

+ dx2
2 

+ dx3
2
= 0  

ds
(– – – +)2 

= – dx0
2 

– dx1
2 

– dx2
2 

+ dx3
2 

= 0 

ds
(+ –  – +)2 

=    dx0
2 

– dx1
2 

– dx2
2 

+ dx3
2 

= 0 

ds
(+– – –)2

 =     dx0
2 

– dx1
2 
– dx2

2 
– dx3

2 
= 0   

ds
(– – + –)2

 =  – dx0
2 
– dx1

2 
+ dx2

2 
– dx3

2
= 0 

ds
(– + – –)2  

= – dx0
2 

+ dx1
2 

– dx2
2 

– dx3
2
 = 0 

ds
(+ –  + –)2

 =    dx0
2 
– dx1

2 
+ dx2

2 
– dx3

2
 = 0 

ds
(+ + – –)2  

=
  
   dx0

2 
+ dx1

2 
– dx2

2 
– dx3

2  
= 0 

              
 

ds
(– – – – )2 

=  – dx0
2 
– dx1

2 
– dx2

2 
– dx3

2 
= 0 

ds
(+ + +  –)2  

=
      

dx0
2 

+ dx1
2 
+ dx2

2 
– dx3

2
 = 0 

ds
 (– + + –)2

 = – dx0
2 
+ dx1

2 
+ dx2

2 
– dx3

2 
= 0 

ds
(– + + +)2  

=
  
– dx0

2 
+d x1

2 
+ dx2

2 
+ dx3

2
 = 0           

ds
(+ + – +)2   

=
    

 dx0
2 

+ dx1
2 
– dx2

2 
+ dx3

2
 = 0 

ds
(+ – + +)2

  =    dx0
2 

– dx1
2
+ dx2

2 
+ dx3

2 
= 0

 

ds
(– +  – +)2

 = – dx0
2 
+ dx1

2 
–  dx2

2 
+ dx3

2 
= 0 

ds
(– – + +)2

 
 
=

  
– dx0

2 
– dx1

2 
+ dx2

2 
+ dx3

2 
= 0 

                                                                                                                                                      (1.11.1) 

with the corresponding signatures  

                                              )()()()(

)()()()(

)()()()(

)()()()(









   

 As a result of this averaging, we need only 4 16 = 64 mathematical measurements. By classi-

fying metric spaces with the metric (1.11.1) from Felix Klein [8], these can be divided into three topo-

logical classes:  

 
 

Fig. 1.11.1. Sixteen scalar products of 4-bases leading  

to metrics with the same signature ( +  +) 
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Level 1: 4-space, whose signatures are composed of four identical characters [8]:  

                                                x0
2 

 + x1
2 

+x2
2 

+x3
2
 = 0        (+ + + +)                                    (1.11.2) 

                                                    – x0
2 

– x1
2 
– x2

2 
– x3

2
 = 0         (– – – –)      

forming a so-called zero-metric 4-space. In these spaces, there is only one valid point, located at the 

beginning of the light cone. All other terms describing these spaces are imaginary. In fact, the first of 

expressions (1.11.2) does not describe a length, but rather a single point (a “dot”), and the second de-

scribes an antidot.  

Level 2: 4-space, whose signatures are composed of two positive and two negative signs [8]:  

                                                      x0
2
 – x1

2 
– x2

2 
+ x3

2
 = 0         (+ – – +)    

                                                      x0
2 

+ x1
2 

– x2
2 

– x3
2
 = 0         (+ + – –)             

                                                      x0
2 

– x1
2 
+ x2

2  
– x3

2
 = 0        (+ – + –)                                          

                                                   – x0
2
 + x1

2 
+ x2

2 
– x3

2 
= 0         (– + + –) 

                                                   – x0
2
 – x1

2 
+

  
x2

2 
+ x3

2
 = 0        (– – + +) 

                                                   – x0
2 

+ x1
2 

– x2
2 

+ x3
2
 = 0         (– + – +)                     (1.11.3)   

which represents a variety of options for 3-dimensional tori.  

Level 3: 4-space, the signature of which consist of three identical signs and the opposite one:  

                                                  – x0
2 

 –x1
2 
– x2

2 
+ x3

2
 = 0        (– – – +)    

                                                  – x0
2 

– x1
2 
+ x2

2 
– x3

2
 = 0        (– – + –)   

                                                  – x0
2 

+ x1
2 

– x2
2 

– x3
2
 = 0         (– + – –)                                          

                                                     x0
2 

– x1
2 
– x2

2 
– x3

2
 = 0         (+ – – –)                                      

                                                     x0
2 

+ x1
2 

+ x2
2 

– x3
2
 = 0        (+ + + –)                                    

                                                     x0
2 

+ x1
2 

– x2
2 

+ x3
2
 = 0        (+ + – +)        

                                                     x0
2 

– x1
2 
+ x2

2
 + x3

2
 = 0        (+ – + +)         

                                                  – x0
2 

+ x1
2 

+ x2
2 

+ x3
2
 = 0         (– + + +)                                     (1.11.4)   

rendering 3-dimensional oval surfaces:  ellipsoids, 

elliptic paraboloid, hyperboloids of two sheets.  

A simplified illustration of signatures of 

2-dimensional space with the corresponding to-

pologies is shown in Figure 1.11.2. From this 

figure it can be seen that the signature of the 

quadratic form is uniquely related to the topology 

described by its 2-dimensional representation.  

 

 

a) sign (+ +);                   b) sign (– +);            c) sign (+ 0) 

  x3 = x1
2 
+ x2

2
            x3 = x2

2 
– x1

2
                             x3 = x1

2 
 

   parabolic                   saddle                     U-shaped 

    surface                    surface                       surface 

 

Fig. 1.11.2. Illustration of the connection between the                  

signature of a 2-dimensional space and its topology [8] 
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Sixteen types of signatures (1.11.2) to (1.11.4) corresponding to the 16 types of metric space to-

pologies form an matrix 

             

 































33231303

32221202

31211101

30201000

)(

)()()()(

)()()()(

)()()()(

)()()()(

abdssign                        (1.11.5)  

properties of which coincide with the properties of the matrix stignature (1.8.2).  

Definition 11.1 The “Chess analogy” refers to the similarity between the Algebra of Signatures 

(AS) with the world of chess.  

On a checkerboard there are 88 cells = 64: 32 white and 32 black. Also in the matrix signa-

tures (1.11.5) there are 64 characters, 32 of them plus “+” and 32 minus “”.  

At the beginning of the game on a chess board there are 32 chess pieces present: 16 white and 

16 black. Also within the Algebra of Signatures at each point mn-vacuum there are sixteen 4-bases, 

which consist of  rotating electric field vectors (Figure 1.6.6), i.e. “light figures”, and sixteen 4-bases 

associated with the corners of the cubic cell of a 3-D landscape (Figure 1.6.2), i.e. “darkness figures”.  

In addition, the signature (topology) of 16 types of metric spaces (1.11.2) to (1.11.4) is similar 

to that of chess pieces (Figure 1.11.3.):  

– zero to two topologies (1.11.2) correspond to the “king” and “queen”;  

– six toroidal topologies (1.11.3) correspond to the three pairs of chess  

   figures:  2 “bishops”, 2 “knights” and 2 “rooks”;  

– eight oval topologies (1.11.4) correspond to the eight “pawns”.  

 

(+ – + +) 
pawn 

(– – – +) 
pawn 

(+ + – +) 
pawn 

(+ – – –) 
pawn 

(+ + + –) 
pawn 

(– + + +) 
pawn 

(– – + –) 
pawn 

(– + – –) 
pawn 

(– – + +)  
rook 

 (+ – + –)     
bishop 

(– + + –) 
knight 

(+ + + +) 
queen 

(– – – –) 
king 

(+ – – +) 
knight 

(– + – +) 
bishop 

(+ + – –) 
rook  

 

Fig. 1.11.3. Comparison of signatures (topologies) of metric spaces with chess pieces 

 

We should note that by addition (and subtraction) of signs, according to the rules: 

 

  {+} + {+} = {+};     {–} + {+} = {0};        

  {+} + {–} = {0};      {–} + {–} = {–},     

   {+} – {+} = {0};     {–} – {+} = {0};        

   {+} – {–} = {+};     {–} – {–} = {0},     

 

signatures (1.11.5) are a part of a wider group, consisting of 16+64+1=81 signatures:            
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among them 16 signatures without zero, 64 signatures with zero and one zero signature (0000). 

The signature implicitly takes part in the operations which are carried out with the help of the 

antisymmetric unit tensor (using the Levi-Civita symbol)        in n-dimensional space, defined as  

                                                                                        {

                                     

                                     
                                           

 

                                                       (1.11.7) 

For a tensor         the following identity is valid, with indirect participation of a signature: 

                                                         
      (  ) 

|

|

  
   

    
 

  
   

    
 

  
 

 
  
 

  
 

 
  
 

 
 
 

  
 

 
  
 

|

|
  ,                                                      (1.11.8) 

where S is the number of negative signs in the signature of the metric of the space in question. 

Definition 11.2 The Algebra of Signatures (AS) is an axiomatic system of arithmetic and alge-

braic operations as part of a complete set of stignatures of affine spaces and signatures of metric spac-

es. The Algebra of Stignatures is equipped with the basic operation(s)  of multiplication (division) and 

the Algebra of Signatures is equipped with the basic operation(s) of addition (subtraction) of signa-

tures.   

Algebra of signatures (Alsigna) is a derivative from the words Al (EL) - GOD, Gebor - Power, 

signatures - signs. Thus, Alsigna is revealed as "the Power of the CREATOR, manifested through the 

system of Signs." The main signs of Alsigna are the Hebrew letters (Lashon a-Koydesh - the Holy Lan-

guage) - i.e. The alphabet of signatures. The main Alsigna algorithms are the algorithms for expanding 

the four-letter name of GOD (TETRAGRAMMATON) ה-ו-ה  י-

 

1.12 The second step of the compactification of extra dimensions. 

“Vacuum balance” and “vacuum condition” 

In the second stage for compactification of additional measurements, we define 16 additive su-

perposition metrics (1.11.1)  

ds
2
  =  ds

(+ – – –)2
  +   ds

(+ + + +)2   
+ 

 
 ds

(– – – +)2 
 +  ds

(+ –  – +)2 
 +  

                                 +  ds
(– – + –)2

  +   ds
(+ + – –)2    

+  ds
(– + – –)2

  +  ds
(+ –  + –)2

  +                       

                                +  ds
(– + + +)2

  +
    

ds
(– – – – )2

  +  ds
(+ + +  –)2

 +  ds
 (– + + –)2

  + 

                          +  ds
(+ + – +)2

  +
    

ds
(– – + +)2

  +  ds
(+ – + +)2 

 +   ds
(– +  – +)2

 = 0.                           (1.12.1) 

 

(+ + + +)  

(+ + + 0) 

(+ + 0 0)    

(+ 0 0 0)  

(0 0 0 0)                                                                                             

(0 + + +)  

(0 0 + +) 

(0 0 0 +)    

(+ 0 + +)    

(+ + 0 +)    

(+ + + 0)    

(+ 0 + 0)   

(0 + 0 +) 

(+ 0 0 +) 

(0 + + 0)             

(– – – –)  

(– – – 0) 

(– – 0 0)    

(– 0 0 0)  

(0 0 0 0)                                                                                             

(0 – – –)  

(0 0 – –) 

(0 0 0 –)    

(– 0 – –)    

(– – 0 –)    

(– – – 0)    

(– 0 – 0)   

(0 – 0 –) 

(– 0 0 –) 

(0 – – 0)             

… 

…   

…  

… 

… 

(– + – 0)    

(– 0 + 0)    (1.11.6) 

(0 + 0 –) 

(– 0 0 +) 

(0 – + 0)  
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Indeed, adding the metric (1.11.1), we obtain  

        ds
2  

= ( dx0dx0
 
– dx1dx1

 
– dx2dx2

 
– dx3dx3)  +  (dx0dx0

 
+ dx1dx1

 
+ dx2dx2

 
+ dx3dx3) + 

                + (– dx0dx0
 
– dx1dx1

 
+ dx2dx2

 
– dx3dx3) + (dx0dx0

 
– dx1dx1

 
– dx2dx2

 
+dx3dDx3) +  

                + (– dx0dx0
 
– dx1dx1

 
+ dx2dx2

 
– dx3dx3) + (dx0dx0

 
+ dx1dx1

 
– dx2dx2

 
– dx3dx3) +  

                + (– dx0dx0
 
+ dx1dx1

 
– dx2dx2

 
– dx3dx3) + (dx0dx0

 
– dx1dx1

 
+ dx2dx2

 
– dx3dx3

 
) +           

                + (– dx0dx0
 
+ dx1dx1

 
+ dx2dx2

 
+dx3dx3) + (– dx0dx0

 
–dx1dx1– dx2dx2

 
–dx3dx3) +  

                + (dx0dx0
 
+ dx1dx1

 
+ dx2dx2

 
– dx3dx3)  +  (– dx0dx0

 
+dx1dx1

 
+dx2dx2

 
– dx3dx3) +  

                + (dx0dx0
 
+ dx1dx1

 
– dx2dx2

 
+ dx3dx3)  +  (– dx0dx0

 
– dx1dx1+ dx2dx2

 
+dx3dx3) + 

                + (dx0dx0
 
– dx1dx1

 
+ dx2dx2

 
+ dx3dx3)  + (– dx0dx0

 
+ dx1dx1

 
– dx2dx2

 
+ dx3dx3) = 0.     (1.12.2)   

Instead of summing homogeneous terms in the expression (1.12.2), we can only sum up the 

signs facing these terms. Therefore, for brevity the expression (1.12.2) can be represented in an equiva-

lent ranked form:  

0 =  

0 = 

0 = 

0 = 

0 =                                                            

0 = 

0 = 

0 = 

0 = 

0 =  

 
( 0   0   0   0) 

 (+   +   +   +) 

 (–   –   –   + ) 

 (+   –   –   + ) 

 (–   –   +   – ) 

 (+   +   –   – ) 

 (–   +   –   – ) 

 (+   –   +   – ) 

 (–   +   +   +) 

 (0   0    0   0) + 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

(0   0   0   0) 

(–  –   –   – ) 

(+  +   +  – ) 

(–  +   +  – ) 

(+  +   –   +) 

(–   –   +  +) 

(+  –    +  +) 

(–   +   –  +) 

(+   –   –  –) 

(0   0   0   0) + 

= 0 

= 0 

= 0 

= 0 

= 0                                                              

= 0 

= 0 

= 0 

= 0 

= 0 . 

    (1.12.3)                                                                                                                                                                                                                   

Adding signs as ranked by columns (1.12.3) and as they are ranked between rows, result in zero.  

The ranked identity (1.12.3) is called transversely “split-zero”, the position in the base geome-

trophysics mn-vacuum.  

Each point in the “vacuum” has an infinite number of transverse “split-zeros”, each correspond-

ing to a mn-vacuum (Figure 1.12.1).  

 

 

 

 

 

 

 

 

Fig. 1.12.1. At each point O of the "vacuum" there are an infinite number of transversely  

"split zeros" of each mn-vacuum (longitudinal 3-dimensional layer) 
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Definition 12.1 A transverse “split-zero” is defined at 

every point of the mn-vacuum ranked expression (1.12.3).  

Definition 12.2 A longitudinal “split-zero” is defined at 

every point of a “vacuum” as a complete set of transverse “split-

zeros” of all mn-vacuums (Figure 1.12.1).  

Addition (averaging) metric spaces with sixteen different 

signatures (topologies) (1.12.1) leads to Ricci flat space, and is 

very similar to the 10-dimensional Calabi-Yau space (Figure 

1.12.2) which is used in string theory.   

The second additional step for compactification of (math-

ematical) measurements leads to their complete reduction. On the other hand, the ranked expression 

(1.12.3) is a mathematical formulation of the “vacuum balance”.  

Definition 12.3 A “mn-vacuum balance” (or “vacuum balance”) refers to the statement that 

each point in a mn-vacuum (“vacuum”) is balanced with respect to the “split-zero” form (1.12.3). 

That is, at each point in a mn-vacuum (“vacuum”), there is a longitudinally and transversely designat-

ed “split- zero”, any deviation from which is associated with the occurrence of mutually opposite 

manifestations. 

 One of the basic axioms of the Algebras of Signatures is the assertion that no action in a            

mn-vacuum can lead to the disruption of the global “mn-vacuum balance” (1.12.3). Therefore                

“mn-vacuum balance” is the basis of  “mn-vacuum conditions.”  

Definition 12.4  A “mn-vacuum condition” (or “vacuum condition”) is any manifestation in a 

mn-vacuum (“vacuum”) with mutually opposite characters: wave - anti-wave, convexity - concavity, 

movement - anti-movement, compression - tension, etc. Local mn-vacuum (“vacuum”) entity and anti-

entity quantities can be shifted and rotated relative to each other, but on the average across the mn-

vacuum region they completely compensate for each other's existence, restoring “mn-vacuum bal-

ance“(“vacuum balance“).  

A “vacuum” can be defined on the basis of “vacuum conditions”.  

Definition 12.5 A “vacuum” is a complete invariant for all types of spatial and spatio-temporal 

transformations. That is, what would be mutually-conflicting changes do not occur in a “vacuum”; the 

average always remains the same.  

 

Fig. 1.12.2. One of the realizations of a 

2- dimensional projection of  a three - 

dimensional visualization of a local 

section of a 10 - dimensional Calabi - 

Yau manifold [6] 
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The ranked expression (1.12.3) allows one to applying some operations to a balanced void in a   

neighborhood around point O without breaking the “vacuum balance”. Such operations include, for 

example, the symmetric transfer of first columns with inverted signs:  

0 =  

– = 

+ = 

– = 

+ =                                                            

– = 

+ = 

– = 

+ = 

0 =  

  
(0    0    0) 

 ( +   +   + ) 

 ( –   –   + ) 

 ( –   –   + ) 

 ( –   +   – ) 

 ( +   –   – ) 

 ( +   –   – ) 

 ( –   +   – ) 

 ( +   +   +) 

 (0    0   0 ) + 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

    (0   0   0) 

    (–   –   – ) 

    (+   +  – ) 

    (+   +   –) 

    (+   –   +) 

    (–   +   +) 

    (–   +   +) 

    (+   –   +) 

    (–   –   – ) 

    (0   0   0)+ 

 

= 0 

= + 

= – 

= + 

= –                                                              

= + 

= – 

= + 

= – 

= 0      

                                                                                                                                                (1.12.4) 

or the transfer of any of the rows of the numerators, ranked (1.12.3) in their denominator by inverted 

signs, for example: 

0 =  

0 = 

0 = 

0 = 

0 =                                                            

0 = 

0 = 

0 = 

0 = 

 (0   0    0   0 ) 

 (+   +   +   + ) 

 (–   –   –   + ) 

 (+   –   –   + ) 

 (+   +   –   – ) 

 (–   +   –   – ) 

 (+   –   +   – ) 

 (–   +   +   +) 

 (+   +   –   +)+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

  (0   0   0   0) 

  (–  –   –   – ) 

  (+  +   +  – ) 

  (–  +   +  – ) 

  (–   –   +  +) 

  (+  –    +  +) 

  (–   +   –  +) 

  (+   –   –  –) 

  (–   –   +  –)+ 

= 0 

= 0 

= 0 

= 0 

= 0                                                              

= 0 

= 0 

= 0 

= 0 

                            (1.12.5)  

 

Rabbi Moisha Kardovero (RaMaK) in the book "Parades Rimanim" noted that the mekubalim 

(Kabbalists - the sages of the Secret TORAH) often symbolized the Tree of Sephiroth with the letter א 

(Aleph), which consists of three letters 

   (Aleph)א                                                         

 (1.12.6a)                                                    י ו י   

Gematria (numerical value) of the letter Aleph coincides with the gematria of the Four-letter 

Name of the CREATOR (1.6.4) 

 (1.12.6b)                               ,26 = 16 + 10 = 10 + 6 + 10 =   י ו י    א                                              

 

ה-ו-ה                                                                    .26 = 10 + 5 + 6 + 5  = י-
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Signature Matrix (1.11.5) 

                         































33231303

32221202

31211101

30201000

)(

)()()()(

)()()()(

)()()()(

)()()()(

abdssign , 

remarkably closely matches the structure of the letter א Aleph (1.12.6a) in many respects. 

First, the letter א contains two stignature matrices 

 .32 = 16 + 16        ,16 = 10 + 6 = ו י      ,16 = 10 + 6 = י ו                             

Secondly, the antisymmetric properties of the signature matrix with respect to the main diago-

nal correspond to the antisymmetric arrangement of two letters י (Yud) relative to the letter ו (Vav) in 

the letter א (Aleph), etc. 

These circumstances confirm once again that the matrices of the stignatures (1.8.2) and signa-

tures (1.11.5) can be interpreted as the projection of the properties of the Kabbalistic Tree of the Se-

phiroth on the metric properties of the “vacuum” (m,n-vacuum). And the Blessed Name of the            

ALMIGHTY  ה-ו-ה   .is everywhere (H V H I i) י-

 

1.13 Dual mn-vacuum regions 

The vacuum balance is not disturbed when one uses the ranks in (1.12.3) to translate one line 

from the numerator to the denominator, with the change of signs on the opposite of the rules of arith-

metic. For example, the transfer of the ranked signatures ( + + +) and  of the numerators from 

the ranks in (1.12.3) to the denominator.   

  

 

 

 

 

 

                                                                                                                                                     (1.13.1)    

In this case, the signature (+ – – –) of the Minkowski space with the metric (1.7.3) was obtained 

in the denominator of the left rank of (1.13.1) 

                   ds
2 

= c
2
dt

2 
 dx

2 
 dy

2 
 dz

2 
= dx0

2 
 dx1

2 
 dx2

2 
 dx3

2 
= 0       (1.13.2)  

(+   +   +   +) 

 (–   –   –   + ) 

 (+   –   –   + ) 

 (–    –  +   – ) 

 (+   +   –   – ) 

 (–   +   –   – ) 

 (+   –   +   – ) 

 (+   –   –   – )+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

(–  –   –   – ) 

(+  +   +  – ) 

(–  +   +  – ) 

(+  +   –   +) 

(–   –   +  +) 

(+  –    +  +) 

(–   +   –  +) 

(–   +   +  +)+ 

=0 

=0 

=0                              

=0  

=0 

=0 

=0 

=0 . 
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and the denominator of the right ranks with the inverted signature ( + + +) for the Minkowski anti-

space from the metric (1.7.4)  

                   ds
(– + + +)2

 = – c
2
dt

2
 + dx

2 
+ dy

2 
+ dz

2
 = – dx0

2 
+ dx1

2 
+ dx2

2 
+ dx3

2
 = 0.              (1.13.3)          

Thus, by addition (or arithmetic average), seven metrics with signatures in the numerator from 

the left ranks (1.13.1) can be as defined (1.7.2) to identify the “outer” side of a 2
3
-mn-vacuum region 

with signature (+ ), or “subcont”; by adding (or arithmetic averaging of) seven metrics with signa-

tures in the numerator of the right ranks (1.13.1), one can identify the “inner” side of a  2
3
-mn-vacuum 

region with the signature ( + + +), or “antisubcont”.  

Thus it is possible to reduce the number of measurements considered to 4 + 4 = 8, and retain the 

vacuum balance  

                               ds
(+ – – –)2 

+ ds
(– + + +)2

 = 0     or     (+ – – –) + (– + + +) = (0 0 0 0).              (1.13.4) 

As shown in Section 7, the result can be interpreted as the presence in a 2
3
-mn-vacuum for two 

mutually opposite 4-D sides:  

          – the “outer side” with metric ds
2

, designated by the term “subcont” (Def. 7.4);  

          – the “inner side” with the conjugate metric ds
( + + +)2

, designated  “antisubcont” (Def. 7.5).  

In any light-geometric problem it should be borne in mind that a mn-vacuum region is the result 

of additive superposition (averaging) at least sixteen 4-dimensional regions with metrics (1.11.1) and 

signatures (topologies) (1.11.5). That is, the number of mathematical measurements should be at least 4 

× 16 = 64. However, a number of problems of the “vacuum” model can be reduced to a two-way con-

sideration with 4 + 4 = 8-dimensional mn-vacuum region.  

The transition from 64 (or 8) to the mathematical measurements 3 physical measurements of the 

“vacuum” and one temporal dimension of the “observer” will be considered below.  

A side consideration is that a 4-D mn-vacuum region in the Algebra of Signatures (AS) is pro-

hibited by the “vacuum condition.” This significantly distinguishes AS from Einstein’s General Rela-

tivity.  

Thus, it ends up that the Minkowski space with signature  can be represented as a sum 

(i.e., the additive superposition or averaging) of the 7-metrics of regions for which the signatures of the 

numerator are ranked left (1.13.1)  

                              ds 
(+ – – –)2

 = ds
(+ + + +)2

  + ds
(– – – +)2

  + ds
(+ – – +)2

 + ds
(– – + –)2

 +                               

                                               + ds
(+ + – –)2

 + ds 
(– + – –)2

 + ds
(+ – + –)2

,                     (1.13.5)  

and a Minkowski antispace with signature ( + + +) can be represented as a sum (or averaging) of met-

ric 7-spaces for which the  signatures are ranked from the numerator of the right (1.13.1)  

 



44 

 

  

                            ds
(– + + +)2

  = ds
(– – – – )2

 + ds
(+ + +  –)2

 + ds
(– + + –)2

 + ds
(+ + – +)2

 +                                

                                             + ds
(– – + +)2

 + ds
(+ – + +)2

 + ds
(– + – +)2

.                                          (1.13.6)   

 In expanded form the total metric (1.13.5) and (1.13.6) takes the form of corresponding ranks 

(1.13.1) 

 

ds
(+ + + +)2 

=
      

dx0
2 

+ dx1
2 
+ dx2

2 
+ dx3

2
  

ds
(– – – +)2 

= – dx0
2 

– dx1
2 

– dx2
2 

+ dx3
2 
 

ds
(+ –  – +)2 

=    dx0
2 

– dx1
2 
– dx2

2 
+ dx3

2  
 

ds
(– – + –)2

 =  – dx0
2 

– dx1
2 
+ dx2

2 
– dx3

2
  

ds
(– + – –)2  

= – dx0
2 

+ dx1
2 
– dx2

2 
– dx3

2
  

ds
(+ –  + –)2

 =    dx0
2 

– dx1
2 
+ dx2

2 
– dx3

2
  

ds
(+ + – –)2  

=
  
   dx0

2 
+ dx1

2 
– dx2

2 
– dx3

2 

ds
(+– – –)2

 =     dx0
2 

– dx1
2 
– dx2

2 
– dx3

2
 

ds
(– – – – )2 

=  – dx0
2 
– dx1

2 
– dx2

2 
– dx3

2 
 

ds
(+ + +  –)2  

=
      

dx0
2 

+ dx1
2 
+ dx2

2 
– dx3

2
  

ds
 (– + + –)2

 = – dx0
2 
+ dx1

2 
+ dx2

2 
– dx3

2 
 

ds
(+ + – +)2   

=
    

 dx0
2 

+ dx1
2 
– dx2

2 
+ dx3

2
  

ds
(+ – + +)2

  =    dx0
2 

– dx1
2
+ dx2

2 
+ dx3

2  

ds
(– +  – +)2

 = – dx0
2 
+ dx1

2 
–  dx2

2 
+ dx3

2 
 

ds
(– – + +)2

 
 
=

  
– dx0

2 
– dx1

2 
+ dx2

2 
+ dx3

2  

ds
(– + + +)2  

=
  
– dx0

2 
+d x1

2 
+ dx2

2 
+ dx3

2
        

                                                                                                                                                      (1.13.7)  

 

1.14 Metrics with respect to spin-tensors 

We return to our consideration of the metric (1.7.3). For brevity, we omit in this metric differen-

tial signs  

                                                  s
2
 = x0

2 
– x1

2
 – x2

2
 – x3

2
.                                                  (1.14.1)  

As is known, the quadratic form (1.14.1) is the determinant of the Hermitian 2 2 matrix  

               

).(,02
3

2
2

2
1

2
0

3021

2130

det3021

2130


















signxxxx

xxixx

ixxxx

xxixx

ixxxx

     (1.14.2)  

In the theory of spinors, matrices of the form (1.14.2) are called mixed second-order Hermitian 

spin tensors [7, 12]. 

We represent a 2 2 matrix (spin tensor) (1.14.2) in the unfolded state, where  

             

,
10

01

0

0

01

10

10

01
3210

3021

2130
4 
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
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i
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          (1.14.3) 

where                 
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i

i

       

is constructed out of a set of Pauli matrices.  

In the theory of spinors an A4-matrix (1.14.3) is placed in one-to-one correspondence with qua-

ternion  
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                                            3322110 xexexexq


                                  (1.14.4)  

under the isomorphism  
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01
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0
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01
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
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
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 e

i

i
ee


                   (1.14.5)  

Similarly, each quadratic form:                                                                                       (1.14.6)  

 

 

 

 

 

 

 

 

 

can be represented as spin tensors or as an A4-matrix:  

Table 1.14.1 
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Each A4-matrix of Table. 1.14.1 is assigned a “color” quaternion of type (1.8.17), where the im-

aginary units are used as objects  
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which are the Pauli-Cayley spin matrices, which are generators of the Clifford algebra  
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Table. 1.14.1 are only special cases of spin tensor representations of quadratic forms. For ex-

ample, determinants of thirty five 2 2 matrix (Hermitian spin tensors):  
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are all equal to the same quadratic form . s 2
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Likewise branch (degenerate) spin 

tensors represent all 16-quadratic forms, as listed in Table 1.14.1.  

Future articles in this series of articles, together labeled “Alsigna”, will  show that any discrete 

degeneracy (i.e., latent ambiguity or deviation) of the original ideal state of a mn-vacuum from its ini-

tial state leads to cleavage (quantization) by a discrete set of disparate states across its transverse and 

longitudinal layers.  

The sixteen types of A4-matrices are equivalent to 16 “color” quaternions (1.8.17). For clarity, 

all types of “color” designated by A4-matrices are summarized in Table 1.14.2.    

 

Table 1.14.2  
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The Algebra of Signatures associates the superposition of affine regions balanced about zero 

with 16 types of stignatures:  

 

  ds =  (– dx0 – dx1 – dx2 – dx3)  +  (   dx0 + dx1+ dx2 + dx3) + 

         + (   dx0 + dx1+ dx2 – dx3)  +  (– dx0 – dx1 – dx2 + dx3) +  

         + (– dx0 + dx1+ dx2 – dx3)  +  (   dx0 – dx1 – dx2 + dx3) +  

         + (   dx0 + dx1 – dx2 + dx3) +  (– dx0 – dx1+ dx2  – dx3) +                            

         + (– dx0 – dx1+ dx2 + dx3)  +  (  dx0 + dx1 – dx2 – dx3) +        

         + (   dx0 – dx1 + dx2 + dx3) +  (– dx0 + dx1 – dx2 – dx3) +  

         + ( – dx0+ dx1 – dx2+ dx3)  +  (   dx0 – dx1 + dx2 – dx3) + 

         + (   dx0 – dx1 – dx2 – dx3)  +  (– dx0 + dx1+ dx2 + dx3) = 0,      (1.14.10)  

 

with one realization of the superposition of 16 A4-matrices:  
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Expression (1.14.11) is equal to a 2 2 zero matrix, 

i.e. conforming to the principle of the “vacuum balance”.  

We have here a spin tensor mathematical apparatus 

suitable for solving a number of problems associated with 

a multi-vacuum inside the rotational process.  

Spintensor properties of the m,n-vacuum length are 

associated with rotational (cyclic) processes, which are 

defined in the Universe by the Disclosure of the Great 

Name of GOD 
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The book Zog'ar says: “Beyond all that can be said, and that which is impossible and should 

not be said, above all that is Created by GOD, and that which itself belongs to GOD'S, there is Abso-

lute UNITY, having no parts, no ends, no levels, no limits. The Concealment of the Concealed, the Mys-

tery of Infinity, the Node in the Coiled One, closed in the Ring ... ". 

 

Consider two examples using spin tensors.  

Example 14.1 Suppose that a column matrix and its Hermitian conjugate matrix s form a string  
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that describe the state of the spinor.  

A back projection of the coordinate axes for the case where a metric space has a signature 

 can be determined using spin tensors (1.14.3)      

 י     ה  

  ה     ו  
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                                                                                                                                                    (1.14.13)  

Example 14.2 Let a forward wave be described by  
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and its reverse wave  
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where a+ and a  are the forward and reverse wave amplitudes, resp. In general, the complex num-

bers:        
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contain information about the phases of the waves  φ+  and  φ– .  

Mutually opposing waves (1.14.14) and (1.14.15) can be represented as a two-component 

spinor:  
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The corresponding Hermitian and its conjugate spinor  
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Conditions of normalization in this case are expressed by the equation  
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To find the spin projections (circular polarization) of the light beam on the coordinate axes, we 

use spin tensors  
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which is associated with three-dimensional element length  
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Putting x1 = x2 = x3 = 1 into the expression (1.14.20), we consider the projection of the spin on 

the coordinate axes  
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Substituting this expression of the spinors (1.14.17) and (1.14.18), we obtain the following three 

spin projection on the corresponding coordinate axis x1 = x,  x2 = y,  x3 = z:  
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                              (1.14.25)  

In the case of a+ = a  and φ+ = φ = 0 we obtain the following average spin projection (rotating 

electric field vector) in the coordinate axes XYZ 

           
0zs ,                                                            

                                                 krtasx   2cos2 2 ,                                                          

                                                 .2sin2 2 krtas y   
  
                                       (1.14.26)  
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Thus, representation of the propagation of a spin conjugate pair of waves leads to the descrip-

tion of the circular polarization without additional hypotheses.  

 

1.15 Dirac “bundle” of the quadratic form 

Consider a Dirac “bundle” of a quadratic form on the metrics  

            
222222 dzdydxdtcds  = dx0

2 
+ dx1

2 
+ dx2

2 
+ dx3

2
  with signature (+ + + +).      (1.15.1)   

We represent this metric as a product of two affine (linear) forms  

 
   '''''' ''''' ' 3322110033221100

2 dxdxdxdxdxdxdxdxsdsdds   .      (1.15.2)  

Expanding the brackets in this expression, we obtain  
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There are at least two options for defining the values of  while satisfying the equality expres-

sions (1.15.1) and (1.15.3):  

1) the method of Clifford aggregates (e.g., quaternion);  

2) the Dirac method.  

In the first case, the linear shape, in the expression (1.15.2), is represented as a pair of affine ag-

gregates with terms coined for this application:     

           zdydxdtcdsd  3210    – “mask” of the metric space   

with stignature {+ + + +}(see Definition 24.1);                      (1.15.4) 

                zdydxdtcdsd  3210   – “interior” of the metric space  

with stignature {+ + + +} (see Definition 24.2),                      (1.15.5)  

where -objects satisfying the relative anticommutativity Clifford algebra  

                                                     η   +   η = 2 η,                                                 (1.15.6)  

where  
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In the second case, the method involves, instead of Dirac’s Kronecker symbol (1.15.7), the unit 

matrix  
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then the condition (1.15.6) is satisfied, e.g., the next set of 4 4 Dirac-matrices:  
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(1.15.9)  

These matrices can be considered as constituting a corresponding Clifford algebra.  

In this case, the expression (1.15.3) acquires a matrix form  
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Equation (1.15.10) with (1.15.8) can be represented as  
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Returning to the quadratic form (1.15.1) and its Dirac bundle (1.15.10)  
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We consider all possible options for the expression (1.15.13). We use the following basis of the 

sixteen types of γ
(ρ)

- Dirac matrices  
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                                                                                                                                                    (1.15.15)  

 

Dirac’s method, unlike the method of affine aggregates, allows four metric spaces with four 

metrics to be “stratified”, appearing as components of the matrix (1.15.11).    

The Algebra of Signatures has considered the quadratic form (1.13.7) with all possible sixteen 

signatures. Each of them can also be “stratified” according to the method of Dirac:  
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                             where  
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 (b)
 = b 

(ab)
 ,                                                      (1.15.17)     

but in this case each b
(ab) 

is a matrix having the respective signatures:  
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Signs are converted to units in the diagonal b
(ab)

-matrices, giving the respective character set 

in signature components of the matrix (1.11.5).  

At this point, for the sake of brevity, the superscripts will temporarily be omitted and instead of 

“b
(ab)

-matrix” we will write “b-matrix”.  

Let us return to Dirac’s method of “destratification” of a quadratic form (1.15.10)  
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and considered all possible options for its closure.  

Each of the sixteen γ
(ρ)

-matrices (1.15.15) can pick up a second γ
()

-matrix of the same set such 

that their product is equal to a b-matrix (1.15.20). For example:  

                                              

.

1000

0100

0010

0001

000

000

000

000

000

000

000

000







































































i

i

i

i

i

i

i

i

       (1.15.21)  



59 

 

  

Each γ
(ρ)

-matrix (1.15.15) can have one of 16 possible stignatures. For example:  
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           (1.15.22)  

For each of these γρ
ij 

matrices can also choose a second γ
nj

-matrix, the product which leads to 

a b-matrix (1.15.20). Thus, given the 16 stignatures and the γ
(ρ)

-matrices (1.15.15), there appear             

16 16 = 256  γρ
ij
-matrices.  

Each γρ
ij
-matrix can be converted into one of 16 mixed matrices (1.15.22). Let us explain this 

statement with the γ11
13 

matrix as an example:  
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       (1.15.23)  

When all two hundred fifty six γρ
ij 

-
 

matrices (1.15.23) are combined, one obtains                                      

16
3 

= 256 16 = 4096nkγρ
ij 

matrices from the basis. Consequently, in this case, the b-matrix (1.15.20) 

can be derived from 4096 products of pairs of nkγρ
ij 

-matrices.  
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In turn, all sixteen b-matrices (1.15.18) may be specified: 16
4 

= 65,536 different variants of 

pairs of products of 
vc

nk γlm
ij
-matrices.

 
 

Similarly, one can continue to build the basis of generalized Dirac γ-matrices almost indefinitely.  

We call the totality of 
vc

nkγlm
ij
-matrices “generalized Dirac matrices”, and the associated            

mn-vacuum matrices will be called “Dirac mn-vacuum”.
  

 

1.16 The explosion of mathematical (auxiliary) measurements 

From the ranked expression (1.12.5), it follows that any pair of metrics of 4-spaces with mutual-

ly opposing signatures may be presented in the form of two metric sums of seven regions with the other 

signatures (topologies), similar to (1.13.7).  

For example, the conjugate pair of metrics ds
2 

and ds
(+ +  +)2 

with mutually opposite signa-

tures  + ) and (+ +  +) can be expressed by the superposition of seven 4-subspaces with signa-

tures (topology) represented in the ranked numerators (1.12.5):  

                   ds
(+ + – +)2

 = dζ 
(+ + + +)2  

+ dζ 
(– + + +)2 

 + dζ 
(+ –  – +)2 

+ dζ 
(– – – +)2 

+ 

                                  + dζ 
(+ + – –)2 

+ dζ 
(– + – –)2 

+ dζ 
(+ –  + –)2

.                                            (1.16.1)                                  

                 and  

                   ds
(– – + –)2

 = dζ 
(– – – – )2 

+ dζ 
(+– –  –)2 

+ dζ 
(– + + –)2

 +  dζ 
(+ + + –)2 

+ 

                                  + dζ 
(– – + +)2 

+ dζ 
(+ – + +)2 

+ dζ 
(– + – +)2

.                (1.16.2)                                        

Similarly, the 256 metrics with signatures (1.10.15) can be isolated from 128 conjugate pairs of 

metrics, each of which can be expressed by superposition of 7 + 7 = 14  4-dimensional sub-metrics. As 

a result, the number of mathematical (auxiliary) measurement is already 128 14 4 = 3584.  

In turn, the conjugate pair of sub-metrics can be decomposed further in the same way to             

7 + 7 = 14 sub-sub-metrics, and so on; this can continue indefinitely.  

In this way, we obtain a theory of relatively balanced “split zeroes” (1.12.3), in which the “vac-

uum” is first stratified into an infinite number of nested mn-vacuum (i.e., longitudinal layers of a “vac-

uum”, see Sections 3 and 4). Then, each of the mn-vacuum split into an infinite number of 4 - imen-

sional metrics of sub-regions, sub-sub-regions etc. to infinity, giving us transverse layers of the “vacu-

um”.  

Definition 16.1 A transverse bundle “vacuum” is a representation of each local region              

mn-vacuum as a superposition of 4-dimensional metric sub-regions, sub-sub-regions, etc. with the 64 

possible signatures (topologies) (1.11.6).  

In this article, all the above concerned only one possibility of algebras with signatures develop-

ing relative to the 4-basis ei
(5) 

(e0
(5)

, e1
(5)

, e2
(5)

, e3
(5)

), selected as a basis, and the stignature multiplication 
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rule (10.6). Similarly, using all the other 4-bases (Figure 1.6.3), we get the 16 endless series of embed-

ding outlined in AS. But by virtue of the asymmetry, only 10 of them are necessary.     

As long as the local site of the “vacuum” is not warped, all 10 dimensions in this neighborhood 

are completely identical. However, in the case of curving “vacuum”, the 10 dimensions are differently 

oriented with respect to curvature, and can be developed in different ways.   

Definition 16.2 The "Qabbalistic analogy" is a comparison, conceived by the author, to show 

that the Algebra of Signatures (AS) is identical to the system of the Tree of Ten Sephirot of the Lurian 

Qabbalah. 

According to the Lurian Qabbalah, the Name of GOD י-ה-ו-ה (further, instead of letters of He-

brew letters the transliteration HVHI is used) is revealed in the form of  the "Tree of Ten Sephirot" 

which can be obtained by squaring the square matrix formed by the Letters of this Name: 
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    (1.16.3) 

 

The components of this matrix correspond to the 10 Sephirot:   

 

                                                                                                                        Table 1.16.1 

Name letter Matrix Component (16.3) Sephirah 
i  

edge of the Letter Yud 
II Kether 

I HH Hochmah 

H VV Binah 

V IV, IH, IH, VH, VH, HH 

VI, HI, HI, HV, HV, HH 

Tiphereth * 

H HH Malkuth 

 

where Sephirah Tiphereth * consists of six dual Sephirot: 

                           Chesed  (IV = VI)      Gvura (IH = HI)     Tiphereth (IH = HI)                               

                           Netzach (VH=HV)    Hod (VH = VH)    Yesod  (HH = HH)  

A slightly transformed matrix (1.16.3) can be put into correspondence with a matrix of signa-

tures (1.11.5) 
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At the same time, just as each qabbalistic Sephirah consists of an infinite set of sub-Sephirot, so 

too each signature is the result of superposition of infinite number of sub-signatures [e.g. (1.16.1) and 

(1.16.2)].  

16a. Alphabet of the Signatures  

Some boast of chariots, others of horses, and we are proud of the Name of י-ה-ו-ה ם-י-ה-ל-א 

(LORD GOD). They staggered and fell, but we stood up and stood straight.” 

                                                                                                king David (Psalms 19: 8-9) 

“And all who trust in YOU will rejoice, they will rejoice forever, and YOU will Protect them; 

and those who love YOUR Name י-ה-ו-ה will boast of YOU ”. 

                                                                                                king David hamelech (Psalm 5:12) 

 

Some mathematicians may find the above constructions of the Algebra of signatures quite inter-

esting. But physicists will certainly ask themselves the question: - "What is all this for?" 

This is necessary in order, on the one hand, to develop a mathematical apparatus that, possibly, 

will allow our consciousness to plunge into the previously unattainable depths of the "vacuum". On the 

other hand, this is necessary to reconcile the language of geometrized physics with the logical appa-

ratus of the infinite concepts of Kabbalah (see [8]) in order to fill physics with awe of the Greatness 
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and Holiness of the INFINITY, over which the Great Four-Letter Name of the CREATOR י-ה-ו-ה 

(HVHI) is called [18]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Everything that was said before was related to the Disclosure of only one Sephirah. Recall that 

of the sixteen 4-bases shown in Fig. 1.6.3, one 4-basis ei
(5)

(e0
(5)

,e1
(5)

,e2
(5)

,e3
(5)

) was chosen as a base. 

Regarding it, the signatures of the remaining 15 and 4-bases (Table 1.8.1) and the matrix of the signa-

tures (1.8.2) were obtained. As a result of the subsequent unfolding of the Algebra of Signatures ac-

cording to the Algorithms of Revealing the Name of GOD י-ה-ו-ה (HVHI), an infinite mathematical 

disclosure of one Sefira is obtained. 

If we choose, for example, the 4-basis ei
(7) 

(e0
(7)

,e1
(7)

,e2
(7)

,e3
(7)

) as a base, then we obtain a differ-

ent set and a different matrix of signatures. Further, performing similar operations, we get an infinite 

opening of the second Sefirah. 

Similarly, sorting out all the other 4-bases as a base (Fig. 1.6.3), we get 16 infinite Sephiroth in 

total. But due to the asymmetry similar to (1.8.6b) – (1.8.6c), there are only 10 different Sephiroth left 

in full accordance with the “Sefer ha-Yetzira” by Abraham Aveinu (“The Book of Creation” of our fa-

ther Abraham).     

As long as the local area of the “vacuum” is not curved, all 10 Sephiroth are almost completely 

identical, and They are the 10 unrevealed (mutually compensating) components of the single Zygote. 

 יהוה
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However, in the case of a curvature of the "vacuum", these 10 Sephiroth will be oriented differently 

relative to this curvature (if it is not spherically symmetric), and may unfold in different ways. 

"EMPTY" will become for us the Source of Colossal Abundance, if we learn to understand IT 

and revere IT with reverence. 

16a.1 "Guiding Thread" 

Algebra of signatures (Alsigna) considers itself to be a continuation of not only general relativi-

ty to A. Einstein, but also the Cause of the forefathers of the Israeli people: Abraham, Yitzchak and Ja-

cob, since it tries to construct the light-geometry of the "vacuum", relying on the Algorithms for reveal-

ing the Great and Formidable Name of the CREATOR י-ה-ו-ה. 

This 4-letter Omnipresent Great Name י-ה-ו-ה (TETRAGRAMMATON) serves as the Criterion 

for the completeness of Alsigna's model concepts. 

As, for example, on the basis of the analysis of perturbations in the orbit of Uranus, the position 

of the still not discovered planet Neptune was predicted, in the same way the presence, for example, of 

three solutions of the vacuum equation unambiguously indicated that there must be a fourth solution - 

in four the letters of TETRAGRAMMATON. Also, every time a fifth generalizing element was to be 

found associated with the end (tip) of the Letter י. 

The Name of ALMIGHTY י-ה-ו-ה (H 'V H I) each time serves as the "Guiding Thread" for the 

Algebra of signatures. As king David said: “I always put the Name י-ה-ו-ה (Yud - Kay - Vav - Kay) in 

front of my eyes when I looked at the World”, and Alsigna on everything looks through this Great and 

and Formidable Name of ALMIGHTY (details in [4 – 9]).  

In this section, an attempt is made to connect the light-geometry of the “vacuum” with another 

algorithm for revealing the Great Name of CREATOR י-ה-ו-ה (H 'V H I): “Alphabet”. 

 

 

16a.2 Excerpts from "Sefer ha-Yetzira" (Book of Creation) 

Jewish tradition says that Abraham orally passed on to his heirs the Sefer ha-Yetzira (the Book 

of Creation). For a long time this Book was kept in the memory of his best descendants. But during the 

time of terrible persecution (after the destruction of the second Jerusalem Temple), rabbi Akiva wrote 

down the Sefer ha-Yetzira (the Book of Creation) in order to prevent its loss. 

Here are excerpts from the Sefer ha-Yetzira: 

"Twenty-two letters: HE (GOD) Inscribed them, Knocked them out, Made their combinations 

and permutations, Weighed them and Created a name for everything created and everything that has to 

be created." 
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“Twenty-two letters of the base. HE installed them on a sphere like a wall in 231 rows, and the 

sphere rotates back and forth, and the sign for this: there is no higher than גכע (pleasure), and no lower 

than עגכ (ulcer) ”. 

“How did HE weigh them (Letters) and make combinations and permutations? One letter - with 

all, and all letters - with one, two - with all and everything - with two, and so on, and there are 231 

rows. All created and all speech happened in the same way. " 

            “HE from Nothing Made Something, and Cut out large Pillars from the Boundless Air, and here 

is the sign: one letter - with all, and all - with one. 

In the book of one of Arizal's (Rabbi Yitzhak Luria’s) disciples, Mikdash de Melech (Sanctuary 

of the King), the following words are given: 

 “When EIN SOPH, Baruch, Wanted to Reveal His Greatness and Give Good to all those pre-

sent in the Creation of His Creation, HE Made Clothes from the Light of His Essence, Which is called 

TORAH. The Light of TORAH is Born from 231 Shaarim (Gate) of the Person, starting with the first 

letter ת (Aleph), and 231 Shaarim (Gate) of the Back, starting with the last letter ת (Taf). " 

In the book "Daat ve Tvuna" (Knowledge and Understanding) of another follower of Arizal, 

Rabbi Yosef Chaim (better known as Ben Ish Hai), the following is written (section 7 in [8]): 

“Sod ha-Malbush (Secret of the Garment) In the book of Zog'ar, in the section "Bereyshit" (Be-

ginning) there is the following very hidden statement: - "You should know that the TORAH was creat-

ed from 231 Shaarim (Gates). ALMIGHTY decided to Open up and Do Good to Everyone. HE Made E 

Malbush (Robe) from HIS Essence, which is called TORAH, which is built 231 Shaarim Panim (Gate 

of the Face) and 231 shaarim Achor (Gate of the Back). 

After that, HE Squeezed HIS LIGHT in a certain Place, then He removed this LIGHT from the 

Center of the given Place, Leaving an empty Cavity (Womb). There was only Reshimo (Fingerprint) 

from LIGHT of EIN SOF, Baruchu. 

This Reshimo (Imprint) is Levush (Clothes, Cloth), which HE Made by Fold the Hebrew Al-

phabet in half, connecting the Bottom of the Alphabet with its Top. " 

Ben Ish Hai explains: - If you put the last 11 Hebrew letters under the first 11 letters of Hebrew: 

        

                                                                                                                                          (1.16.3) 

 

you get 11 paired combinations: כת ,…,דס ,גנ ,במ ,אל. These paired combinations of Hebrew letters are 

briefly called "לא-מב" (AL-BaM). 
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AL-BaM is the first Combination that was obtained during the Creation of the original Fabric of 

the Universe. In addition to Her, there are 21 more ways to combine two Hebrew letters in 11 similar 

paired combinations. Therefore, in total it turns out 21 × 11 = 231, i.e. ראל (RLA - 231) of all kinds of 

pairs of letters of the Hebrew alphabet, which are called Shaarim (Vrata). 

Of the 22 letters of the Hebrew (Hebrew alphabet), 462 two-letter combinations are made. Half 

of them are inverted combinations of the same letters, for example לא and מב ,אל and כת ,…,מב and כת. 

The number of non-repeating paired compounds is 462: 2 = 231. This number coincides with the num-

ber of combinations of 22 letters, 2 each [4,8]: 

                                      .                          (1.16.4) 

There are 231 "Gates" Panim (Facial) that begin with the first letter of the alphabet א "Aleph", 

and there are 231 "Gates" Achor (Back) that begin with the last letter of the alphabet ת "Taf". Therefore, 

the total number of “Gates” is 462. Twice (231) אלר it will be 462 = נתיב (Netiv - Path) - these are the 

fiftieth “Gates” that Moshe Rabbeinu did not comprehend ”. 

In the commentary on the Sefer ha-Yetzira (Book of Creation), the Jewish sages cite many dif-

ferent ways of pairing the 22 letters of Hebrew. Some of these methods are shown below. 

231
2

462

2

2221

!202

!22

)!222(!2

!222
22 








C
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                                                                                                                               Tables 1.16.1 

Some ways to connect the 22-letter Hebrew in (231) אלר paired combinations 

Taken from comments sages of Torah to the Sefer ha-Yetzira (Book of Creation) 
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16a.2. Malbush (Robe) of Light [4, 8] 

Twenty-two Letters of the Hebrew Alphabet is one of the Algorithms for Disclosing the Great 

Name of the ALMIGHTY 

 ה-ו- ה
- י   

 

 

 

 

 

 

 

 

 

 

 

 

All kinds of permutations of the four letters of the TETRAGRAMMATON 

ה-ו-ה                H'VHI                                     (1.16.5) ≡  י-

lead to the compilation of 4! = 24 Tetragrammatonic forms 

 

                              I H' V H            H I V H'          V I H' H            H' V I H 

                              I H H' V            H I H' V          V H I H'            H' V H I 

                              I V H H'            H H' I V          V H' H I            H' H V I                          (1.16.6) 

                              I H V H'            H H' V I          V I H H'            H' H I V  

                              I V H' H            H V I H'          V H' I H            H' I V H  

                              I H' H V            H V H' I          V H H' I            H' I H V    

 

   H’        V        H          I 

   יהוה   
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In the Name י-ה-ו-ה (H 'V H I) there are two letters ה (Hey), therefore, among 24 combinations 

(16.6), only 12 of them are not repeated. In Kabbalah They describe the cyclical nature of time: 12 

combinations correspond to 12 hours of the daytime and 12 hours of the dark part of the day. Also, the-

se Names consequently Influence the 12 months of the lunar year, etc. 

If from the 24 Tetragrammatonic forms (1.16.6) we deduce from consideration the Name י-ה-ו-ה 

= H' V H I (which is present in the Text of the TORAH as an independent Unit) and the opposite (con-

jugate) Anti-name י -ה-ו-ה  = IHVH', then 22 Tetragrammatonic forms remain, with which 22 letters of 

the Hebrew Alphabet can be compared:. 

 

                                  V H I H'     I H H' V    H I H' V      I H' V H      H I V H'     V I H' H      H' V I H 

ב         ג          ד          ה          ו          ז       א        

 

                                    H' H I V     I V H' H     I V H H'     H H' I V     V H' H I     H' H V I      V H H' I  

 ח             ט         י          כ          ל         מ         נ

 

                                   H V I H'    V H' I H    H' I V H     H V H' I    H H' V I       V I H H'       I H' H V 

 ס          ע         פ          צ          ק         ר        ש

 

                                                                                       H' I H V                                                                                (16.7) 

ת      

 

The forward and backward rays of light, which underlie the light-geometry of the "vacuum", are 

also described by expressions containing four terms each 

 

                                                                                                     H'           V          H           I           i 

                                                         dz + dy + dx – cdt = 0,                                                         (16.8) 

 

                                                                                                     i             I            H           V         H' 

                                                          0 =  cdt – dz – dy – dx.                                                        (16.9) 

 

Of the 4 terms of the linear forms (1.16.8) and (1.16.9), 22 paired (conjugate) combinations are 

made, similar to the 22
nd

 Tetragrammatonic forms (1.16.7):             
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    dy+dx–cdt+dz    –cdt+dx+dz+dy    dx–cdt+dz+dy       –cdt+dz+dy+dx     dx–cdt+dy+dz      dy–cdt+dz+dx       dz+dy–cdt+dx 

 

   –dy–dx+cdt–dz      cdt–dx–dz–dy    –dx+cdt–dz–dy          cdt–dz–dy–dx     –dx+cdt–dy–dz     –dy+cdt–dz–dx      –dz–dy+cdt–dx 

 

   V H I H'    I H H' V    H I H' V     I H' V H     H I V H'    V I H' H    H' V I H 

 א         ב         ג          ד          ה         ו          ז      

   

     dz+dx–cdt+dy      –cdt+dy+dz+dx   –cdt +dy+dx+dz      dx+dz–cdt+dy      dy+dz+dx–cdt      dz+dx+dy–cdt      dy+dx +dz–cdt 

 

  – dz–dx+cdt–dy         cdt–dy–dz–dx     cdt–dy–dx–dz       –dx–dz+cdt–dy     –dy–dz–dx+cdt     –dz–dx–dy+cdt      –dy–dx–dz+cdt 

 

   H' H I V    I V H' H    I V H H'     H H' I V     V H' H I    H' H V I    V H H' I  

 ח            ט         י          כ          ל        מ          נ         

     

       dx+dy–cdt+dz        dy+dz–cdt+dx     dz–cdt+dy+dx      dx+dy+dz–cdt     dx+dz+dy–cdt        dy–cdt+dx+dz     –cdt+dz+dx+dy  

 

     –dx–dy+cdt–dz       –dy–dz+cdt–dx    –dz+cdt–dy–dx    –dx–dy–dz+cdt    –dx–dz–dy+cdt       –dy+cdt–dx–dz       cdt–dz–dx–dy  

 

    H V I H'    V H' I H    H' I V H     H V H' I    H H' V I     V I H H'    I H' H V 

                              ס          ע         פ         צ          ק         ר         ש      

                                                       

                                                                                                      dz–cdt+dx+dy 

 

                                                                                                     –dz+cdt–dx–dy 

 

                                                   H' I H V                                      

 (1.16.10)                                                                   ת                                         

 

The sum of each pair of 22 linear forms (1.16.10) satisfy the "vacuum condition", for example, 

 

                                           (dz–cdt+dx+dy) + (–dz+cdt–dx–dy) = 0.                                   (1.16.11) 

 

We represent linear forms (1.16.8) and (1.16.9) in the form of a complex conjugate pair of af-

fine aggregates 

                                                    ds = lсdt
  
+ idx

 
+ jdy

 
+ kdz,

                                                                     
(1.16.12) 

                                                    ds* = lсdt
  
– idx

 
– jdy

  
– kdz

 
,
                                                                   

(1.16.13) 

 

where k, j, i, l (H 'V H I) are reference units of one of the multiplication tables of the type: 
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The scalar product of affine aggregates (1.16.12) and (1.16.13) leads to the quadratic form 

 

                                     dsds* = ds
(+)2

 = – с
2 

dt
 2 

+ dx
2 

+ dy
 2 

+ dz
 2
.                              (1.16.14) 

 

Similarly, out of 22 pairs of linear forms (1.16.10), one can determine 22 pairs of complex con-

jugate affine aggregates and obtain pairs of scalar products, for example, 

 

                  (ldx–icdt+jdz+kdy) (–lcdt+idz+jdy+kdx) = nyudx
y
dx

u
 with signature (– + + –),     (1.16.15) 

 

                 (–ldx+icdt–jdz–kdy) (lcdt–idz–jdy–kdx) = –nyudx
y
dx

u 
 with signature (+ – – +), 

where 

                                                          



























1000

0100

0010

0001

yun .                                                       (1.16.16) 

In this case, the vacuum condition is met 

 

                                                       nyudx
y
dx

u  
+ (– nyudx

y
dx

u
)
 
=

 
0 .                                        (1.16.17) 

 

Thus, out of 22 pairs of light linear forms (or affine aggregates) - "Hebrew letters" (1.16.10), 

462 metrics are composed by means of their dot product (the essence of "Two-letter combinations"). 

Half of them are inverted combinations of the same “Letters”, for example, לא and מב ,אל and מב, etc. 

The number of such non-repeating paired connections (scalar products) is 462: 2 = 231 (ראל). This is 

the number of combinations of 22 characters by 2: 

                                         231
2

462

2

2221

!202

!22

)!222(!2

!222
22 








C

 l i j k 

l –1 –1 1 –1 

i –1 –1 –k –j 

j 1 k –1 i 

k –1 j –i –1 

 l i j k 

l –1 1 1 1 

i 1 –1 k –j 

j 1 –k –1 i 

k 1 j –i –1 

 l i j k 

l –1 –1 –1 –1 

i –1 –1 k –j 

j –1 –k –1 i 

k –1 j –i –1 
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Light "fabric", woven from 231 "threads" 

(light-metrics) and 231 "anti-threads" (anti-light-

metrics) (Fig. 1.16.1), corresponds to the simplest 

Malbush (Robe) - the Original Fabric of Being. 

Rabbi Moisha Kardovero (RaMaK) in the 

book "PaRDeS Rimanim" noted that there is still a 

sub-Fabric made up of all sorts of similar permuta-

tions of 3 Hebrew letters (Lashon a-Koydesh - the 

Holy Language). Below it is a Fabric made up of 

various combinations (permutations) of 4 Hebrew 

letters, etc. to the most "dense" Fabric, made up of 

all possible permutations of 620 Hebrew letters. The 

number of combinations of this sub-sub-….-Sub-

Fabric for us corresponds to Infinity. 

But, no matter how complex the multilayered Initial Fabric of Existence is, the structure of the 

Tree of Life (Sephiroth) is constantly repeated in It: 

             (1.16.18) 

– Основного варианта Раскрытия Великого Имени י-ה-ו-ה = H’V H I,  

 

(коц)                      II                           –                     Keter (1 Sephira)                  

                      HH                        –                     Hochma (2 Sephira)                          י 

                                             VV                        –                      Bina (3 Sephira)                        ה 

          IV, IH, IH, VH, VH,  HH             –                         Zair Ampin            ו   

                 VI, HI, HI, HV, HV, HH                                                   (6 doubled Sephiroths)    
                                

 HH                      –                   Malchut (10 Sephira)                 (1.16.19)                       ה  

 

which contains the Potency of the Disclosure of the Universal Man (Figure1.16.2) 
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Fig. 1.16.1. An attempt to illustrate one of the possible 

realizations of light fabric (drawing by Lebedev - 

Prokhorov), woven from 462 light "threads" (rays) and 

"anti-threads" (anti-rays) 
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Fig. 1.16.2. Opened Tree of Life (or Tree of Sephiroth) 

has the structure of a Human. Here: 

 

                                                          

                         where 

 

                                                II   = 00   –   Keter                                                i 

                                               HH  = 11   –  Hochma                                           I  

                                              VV   = 22    –   Bina                                               H    
              

                              =   –  Tiphareth *      V 

                                              H'H' = 33  –  Malchut                                          H 
                                                                                                                                                     (1.16.20) 
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Therefore, the Initial Light Fabric of Existence initially contains the Potency of the Embryo 

Opening of the Universal Human (Figure 1.16.3). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.16.3 Development of the Embryo of the Universal Human, Whose Name 

 H’V H I = י-ה-ו-ה
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Fig. 1.17.1. Deformed cubic 

cell of a mn-vacuum 

 

  

Fig. 1.17.2. One of the corners                   

of a test cube of a mn-vacuum 

 

          1.17 Light-geometry on a curved portion of a “vacuum” 

Consider a 3-dimensional curved portion of a “vacuum”.   If 

the wavelength mn of given monochromatic light beams is much 

smaller than the dimensions of the “vacuum” irregularities, then 

this portion of the cubic cell 3-D light landscape (mn-vacuum) is 

curved (Figure 1.17.1).  

Consider one of eight vertices of a cube in a curved          

mn-vacuum (Figure 1.17.1 and 1.17.2). Replace distorted edges, 

departing from a given vertex, by the axes of a curvilinear coordi-

nate system x
0(a)

, x
1(a)

, x
2 (a)

, x
3 (a) 

(Figure 1.17.2).  

The same raw edges of the ideal cube denote a pseudo-

Cartesian coordinate system x
0(a)

, x
1(a)

, x
2(a )

, x
3(a)

.  

The distortion of the edges of the cube under consideration 

in a mn-vacuum can be decomposed into two components:  

1) changing the lengths (compression or expansion) of the 

axes x
0(a)

, x
1(a)

, x
2 (a)

, x
3 (a) 

while maintaining the angles between 

the axes;  

2) distorting the angles between the axes  x
0(a)

, x
1(a)

,
 
x

2(a)
, x

3 (a)  
directly, while maintaining 

their lengths.  

We consider affine distortion separately.  

1). Suppose that only the lengths of the axes x
0(a)

, x
1(a)

, x
2(a)

, x
3 (a)

 are changed by the distor-

tion. Then these axes can be expressed by the original ideal cube axis x
0(a)

, x
1(a)

, x
2(a )

, x
3(a) 

using the ap-

propriate coordinate transformations:  

                           x
0(а)

 = α00
(а)

x
0(а)

 + α01
(а)

x
1(а)

 + α02
(а)

x
2(а)

 + α03
(а)

x
3(а)

;                 

                           x
1(а)

 = α10
(а)

x
0(а)

 + α11
(а)

x
1(а)

 + α12
(а)

x
2(а)

 + α13
(а)

x
3(а)

;
                                                   

 

                           x
2(а)

 = α20
(а)

x
0(а)

 + α21
(а)

x
1(а)

 + α22
(а)

x
2(а)

 + α23
(а)

x
3(а)

;
                          

                           x
3

(а)

 = α30
(а)

x
0(а)

 + α31
(а)

x
1(а)

 + α32
(а)

x
2(а)

 + α33
(а)

x
3(а) 

,
                                         

(1.17.1)
    

      

where      

                                                    αij
(a) 

= dx
i(a)

/dx
j(a)                                                                                    

(1.17.2)
         

using Jacobian transformations or components of tensor elongations.  

2) Suppose now that the change only affects the angles between the axes of the coordinate sys-

tem x
0(a)

, x
1(a)

, x
2 (a)

, x
3 (a)

, and the lengths along the axes remain unchanged. In this case, it is suffi-

cient to consider a change of angles among the basis vectors e0
(a)

, e1
(a)

, e2
(a)

, e3
(a) 

in a
 
distorted frame.
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From vector analysis, it is known that the basis vectors of a distorted 4-basis e0
(a)

,e1
(a)

,e2
(a)

,e3
(a) 

can be expressed in terms of the original base vectors e0
(a)

, e1
(a)

, e2
(a)

, e3
(a) 

in an orthogonal 4-basis via 

the following system of linear equations:  

                           e0
(a) 

= β
00(a) 

e0
(a) 

+ β
01(a) 

e1
(a) 

+ β
02(a) 

e2
(a) 

+ β 
03(a) 

e3
(a)

;
                           

                           e1
(a)

 = β
10(a) 

e0
(a) 

+ β
11(a) 

e1
(a) 

+ β
12(a) 

e2
(a) 

+ β
13(a) 

e3
(a)

;
                                                  

  

                           e2
(a)

 = β
20(a) 

e0
(a) 

+ β
21(a) 

e1
(a) 

+ β
22(a) 

e2
(a) 

+ β
23(a) 

e3
(a)

;
                          

                           e3
(a)

 = β
30(a) 

e0
(a) 

+ β
31(a) 

e1
(a) 

+ β
32(a) 

e2
(a) 

+ β
03(a) 

e3
(a)

,
              

                   (1.17.3)  

                       where  

                                       β
pm(a) 

= (ep
(a) 
em

(a)
) = cos (ep

(a) ^
em

(a)
)                                  (1.17.4)  

using the direction cosines.  

The systems of equations (1.17.1) and (1.17.3) can be represented in a compact form:  

                                                     x
i
 
(a) 

= αij
(a) 

x 
j(a)                                           

(1.17.5)
 

                                         and  

                                                     ep
(a) 

= β
pm(a) 

em
(a)

.
                                                                    

(1.17.6)
 
        

 

The remaining 7 distorted cube corners in a mn-vacuum (Figure 1.17.1) (or rather the remaining 

fifteen 4-bases of Figures 1.6.2 and 1.6.3) are described similarly.  

Consider, for example, the distorted 4-basis vector (1.10.1) 

                                                         ds (7)
 =  ei

(7) 
dx i (7)

.
                                                 

(1.17.7) 

With regard to (1.17.5) and (1.17.6), vector (1.17.7) can be represented as  

                                                                           
ds (7) 

= β 
pm(7) 

em
(7)

αpj
(7)

dx
j(7)

,
                                                  

(1.17.8) 

Similarly, all the vertices of a distorted cube mn-vacuum can be represented by vectors  

                                                ds (a) 
= β

 pm(a) 
em

(a) 
αpj

(a)
dx

j(a)
, 

                              
(1.17.9) 

whereby a = 1, 2, ... , 16. 
  

 

1.18 Curved metric 4-space  

For example, consider two vectors (1.10.1) and (1.10.2), but given in the 5th and 7th curved af-

fine spaces  

                                                 ds (5)
= β

ln(5)
en

(5)
αlj

(5)
dx

j
,
                                                       

(1.18.1) 

                                                 ds (7)
= β

pm(7)
em

(7)
αpi

(7)
dx

i
 .                                     (1.18.2)  

We find the inner product of these vectors  

             ds (7,5)2 
= ds (7)

ds (5)
 = β

pm(7)
em

(7)
αpi

(7)
β

ln(5)
en

(5)
αlj

(5)
dx

i
dx

j 
= сij

(7,5)
dx

i
dx

j                  
(1.18.3) 

where  

                                         сij
(7,5)

=  β
pm(7)

em
(7)

αpi
(7)

β
ln(5)

en
(5)

αlj
(5)

                                        (1.18.4) 
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 are components of the metric tensor (7, 5)’th metric 4-space.  

Thus, the metric (7, 5)’th metric 4-space which results is  

                                                  ds (7,5)2 
= сij

(7,5)
dx

i
dx

j                                                                 
(1.18.5)

 
  

from signature (1.10.5) (+ + +  ) and the metric tensor
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13
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03
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32
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22

)5,7(
12
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02
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31

)5,7(
21
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11

)5,7(
01

)5,7(
30

)5,7(
20

)5,7(
10

)5,7(
00

)5,7( 

cccc

cccc

cccc

cccc

cij .                                              (1.18.6)  

Similarly, the paired inner product of any two vectors (1.17.9)  

 

                                                                        ds (a)
= β

pm(a)
em

(а)
αpi

(a)
dx

i 
,
 
                                         (1.18.7)  

                                                 ds (b) 
= β

ln(b)
en

(b)
αlj

(b)
dx

j
                                                               (1.18.8)  

 

leads to the formation of an atlas, which consists of 16 × 16 = 256 of all possible 4-dimensional curved 

sheets (i.e. metric 4-subspaces) with metrics  

                                                  ds (a, b)2 
= сij

(a, b)
dx

i
dx

j
,
                                                           

(1.18.9) 

whereby a = 1,2, ... ,16;  b = 1,2, ... ,16, with respective signatures (1.10.15) and metric tensors 
 
          

                                   























),(
33

),(
23

),(
13

),(
03

),(
32

),(
22

),(
12

),(
02

),(
31

),(
21

),(
11

),(
01

),(
30

),(
20

),(
10

),(
00

),( 

babababa

babababa

babababa

babababa

ba
ij

cccc

cccc

cccc

cccc

c  ,             (1.18.10)  

where  

                                                 сij
(a, b)

=  β
pm(a)

em
(a)

αpi
(a)

β
ln(b)

en
(b)

αlj
(b)

                                (1.18.11)  

are components of the metric tensor (a,b)’th curved metric 4-subspace.  

 

1.19 4-tensor of deformations 

The classical theory of elasticity, the actual state of the local volume of an elastic-plastic medi-

um generally describes only one space “frozen” in the reference system with its corresponding 4-basis. 

This leads to the analysis of only one type of quadratic form   

                                                                                
  ds 2 

= gij dx
j
dx

j
 ,

                                                      
(1.19.1)  

where gij describes the metric tensor components of the local portion of the curved metric length (16   

components, but of these only 10 are effective, due to the symmetry gji = gij ).  

The quadratic form (1.19.1) is compared with the quadratic form of the original, the ideal state 

of the same local area of the elasto-plastic medium [13]  
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                                                           ds0
2
 = gij

0
dx

i
dx

j
.                                  (1.19.2) 

By subtracting the initial state metric (1.19.2) from the current state metric (1.19.1), we get [13]  

                                     
ji

ij

ji

ijij dxdxdxdxggdssd 2)( 02

0

2  ,                                  (1.19.3) 

                where  

                                                           )(
2

1 0
ijijij gg  ,                                    (1.19.4) 

which is a 4-tensor deformation.  

The representations developed here differ from the classical mechanics of continuous media on-

ly in that the investigated section (cube) of an elastic-plastic medium (in this case the mn-vacuum) de-

scribes a 4-basis, associated with one of the eight corners of the given cube (Figure 1.17.1), and there-

fore describes all the sixteen 4-bases (Figure 1.6.3) (two 4-basis at each vertex of the given cube).  

This leads to the fact that instead of one metric type (1.19.1) in the Algebra of Signatures there 

appears 256 metrics (1.18.9)  

                                                         ds
(a,b)2 

= сij
(a,b)

dx
i
dx

j 
                                                  (1.19.5) 

with the corresponding signatures (1.10.15) which describe the same region (in particular the “vacuum”) 

from different sides. In this case the metric-dynamic state of the given volume is described not by these 

16 terms (components of the metric tensor gji), but rather by 256 16 = 4096 components of the 256 

tensors from gji
(a,b) 

(1.18.11). This achieves not only a significantly more precise description of the 

scope of the curved elastic-plastic medium (in particular, mn-vacuum) in the vicinity of the point O 

(Figure 1.6.1) but also provides the rationale for the identification of a number of more subtle effects of 

a vacuum (which will be considered in future articles).  

The mathematical apparatus of light-geometry of the Algebra of Signatures (AS) developed for 

research is not only a “vacuum”, but also any other 3-dimensional continuum in which the wave dis-

turbances (light, sound, phonons) are distributed at a constant speed.  

 

1.20 The first step of compactification of curved measurements 

As in Section 1.11, in the first stage of compactification of additional (auxiliary) curved mathe-

matical measurements, AS proceeds by averaging 4-metric spaces with the same signature.  

For example, for the 4-metric with signature ( +  +) (Figure 1.11.1) we can average the metric 

tensors
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ij

         (1.20.1)  

where p corresponds to the 14
th

 signature ( +  +) according to the following reference number-

ing:         

                                   

       
       
       
       161284

151173

141062

13951

)(









р
ijсsign         (1.20.2)  

and the averaged metric  

                                                      <ds
(– + – +) 2

> = сij
(14)

dx
i
dx

j 
.                      (1.20.3) 

Similarly, because of the 16-fold degeneracy of the metrics 256 (1.18.9) of curved 4-subspaces 

we obtain 256 : 16 = 16 averaged metrics with 16 possible signatures  

                       <ds
(+– – –)2

>      <ds
(+ + + +)2

>
     

 <ds
(– – – +)2

>
 
     <ds

(+ –  – +)2 
>  

                       <ds
(– – + –)2

>     <ds
(+ + – –)2

>
        

<ds
(– + – –)2

>
   
    <ds

(+ –  + –)2
>                                                                                     

                       <ds
(– + + +)2

>
       

<ds
(– – – – )2

> 
 
   <ds

(+ + +  –)2
>

        
<ds

 (– + + –)2
>  

                             <ds
(+ + – +)2

>
       

<ds
(– – + +)2

>
     

  <ds
(+ – + +)2

>      <ds
(– +  – +)2

>,          (1.20.4)  

where < · > denotes averaging.  

The additive superposition (i.e., average) of all the 16 averaged metrics (1.20.4) should, accord-

ing to the “mn-vacuum condition” (Def. 12.4), be equal to zero  



81 

 

  

                      

 

.0)16()15()14()13(

)12()11()10()9(

)8()7()6()5(

)4()3()2()1(
16

1

2












ji

ij

ji

ij

ji

ij

ji

ij

ji

ij

ji

ij

ji

ij

ji

ij

ji

ij

ji

ij

ji

ij

ji

ij

j
ji

ij

ji

ij

ji

ij

ji

ij

р

ji

р

ij

dxdxсdxdxсdxdxсdxdxс

dxdxсdxdxсdxdxсdxdxс

dxdxсdxdxсdxdxсdxdxс

dxdxсdxdxсdxdxсdxdxсdxdxсds

           (1.20.5)  

All 16 × 16 = 256 components of the 16 averaged metric tensors with сij
(p) 

can be random func-

tions of the observer’s time. But these functions retain a vacuum condition, so must be combined with 

one other to give the total metric (1.20.5) which, on average, always remains equal to zero.  

Based on the total metric (1.20.5), one may develop mn-vacuum thermodynamics, considering  

the complex, near-zero “transfusion” of local mn-vacuum curvatures. They may be considered as rep-

resentations of mn-vacuum entropy and temperature (that is, the randomness and intensity of local  

mn-vacuum fluctuations). One can consider the cooling of a mn-vacuum up to “freezing”, or to the 

contrary its heating up to “evaporation” and many other effects that are similar to the processes occur-

ring in conventional (atomistic) continuous media. Properties of mn-vacuum thermodynamics mainly 

are related to the processes when the gradients of mn-vacuum fluctuations approach the speed of light:  

dcij 
(p)

/dxa  ≈ c  or  dcij
(p)

/dxa ≈ 0 .  

 

1.21 The second step in compactification curved measurements 

Just as was done in Section 13, the expression (1.20.5) can be reduced to two terms  

                             ‹ds
(–)2

›
 
+ ‹ds

(+)2
› = ‹gij

(+)
›dx

i
dx

j  
+ ‹gij

(–)
›dx

i
dx

j
 = 0,                              (1.21.1)  

where  

                                 
     



 
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17

1

р

jiр

ij

ji

ij

ji

ij dxdxсdxdxgdxdxg                             (1.21.2) 

 

is a quadratic form which is the result of averaging seven metrics of (1.20.4) with the signatures in-

cluded in the numerator of the left ranks (1.13.1);  
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ij

ji

ij

ji

ij dxdxсdxdxgdxdxg                           (1.21.3) 

is a quadratic form which is the result of averaging seven metrics of (1.20.4) with the signatures in-

cluded in the numerator of the right order (1.13.1).  
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Thus, from the totality of mn-vacuum fluctuations can be identified:  

– the averaged “external” side of a 2
3
-mn-vacuum region (or averaged subcont) with the averaged 

metric  

                             ds
(+ – – –)2 

= ds
(–)2 

= gij
(–)

dx
i
dx

j  
with signature (+ – – –),

                                 
(1.21.4)

 
  

                        where   
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                   (1.21.5)  

– averaged over the “inner” side of 2
3
-mn-vacuum region (or averaged antisubcont) with the aver-

aged metric  

                                ds
(– + + +)2

 = ds
(+)2 

= gij
(+)

dx
i
dx

j
  with signature (– + + +),                 (1.21.6) 

             where  
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The brackets < · > (averaging) in metrics (1.21.4) to (1.21.7) are omitted for the sake of clarity 

and simplicity. 

Figure 1.21.1 shows schematically the averaged double-sided portion of a 2
3
-mn-vacuum region, 

the outer side of which (subcont) describes the metric ds
2 

(1.21.4) while the inner side (antisubcont) 

describes the metric ds
(+)2 

(1.21.6).
  

 

        

 

 

 

 

 

 

 

Fig. 1.21.1. A simplified illustration of a section of a double-sided 2
3
-mn-vacuum region, the 

outer side of which describes a 4-metric ds
()2

, while its inner side  

describes a 4-metric ds
(+)2

, whereby
 
ε→0 

 

4-dimensional inner side  

of 2
3
-mn-vacuum region 

 

ds
(+)2 

= gij
(+)

dx
i
dx

j 
, 

signature (– + + +) 

 

4-dimensional outer side 

of 2
3
-mn-vacuum region 

 

ds
(–)2 

= gij
(–)

dx
i
dx

j
 , 

signature (+ – – –) 
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1.22 The tensor 4-tension of a 2
3
-mn-vacuum region 

Let the original uncurved metric-dynamic state of the given portion of the outer side of a            

2
3
-mn-vacuum region (i.e. averaged subcont) be characterized by the averaged metric  

                                     ds0
(–)2 

= gij0
(–)

dx
i
dx

j 
    with signature (+ – – –),                            (1.22.1)  

and the curved state of the same portion of the averaged metric is given by  

                                ds
(–)2 

= gij
(–)

dx
i
dx

j
     with the same signature (+ – – –).                    (1.22.2) 

 
 

 Unlike the curved state of the section of subcont,  its uncurved state is determined by the differ-

ence of the form (1.19.3) 

                                 ds
(–)2 

– ds0
(–)2 

= (gij
(–)

 – gij0
(–)

) dx
i
dx

j 
 = 2ij

(–)
dx

i
dx

j
 ,                         (1.22.3)                                     

where  

                                                  ij
(–)

 = ½ (gij
(–)

 – gij0
(–)

)                                                    (1.22.4)     

are the 4-tensor deformations of the local area of the subcont.  

The relative elongation of the curved portion of the subcont is equal to [13]  

                                       1
)(0

)(

)(0

)(0)(

)( 













ds

ds

ds

dsds
l ,                                              (1.22.5)  

                         whence  

                                               ds
(–)2

 = (1 + l
(–)

)
2
ds0

(–)2
.                                              (1.22.6)  

Substituting (1.22.6) in (1.22.3) with (1.22.4), we have [13]  

                                          ij
(–)

 = ½ [(1 + l
(–)

)
2
 – 1] gij0

(–)
,                                                 (1.22.7) 

or, unfolded  

                       ij
(–)

 = ½ [(1 + li
(–)

)(1 + lj
(–)

) cosij
(–)

 – cosij0
(–)

] gij0
(–)

,                              (1.22.8)  

where  

ij0
 

is the angle between the axes xi and xj in the coordinate system “frozen” to its original un-

curved state of the given subcont portion;  

ij 
 

is the angle between the axes xi and xj in the distorted frame, “frozen” in the curved state of 

the same portion of the subcont.  

When ij0
 

= /2, the expression (1.22.8) takes the form  

                               ij
(–)

 = ½ [(1 + li
(–)

)(1 + lj
(–)

) cosij
(–)

 – 1] gij0
(–)

.                                (1.22.9)    

For the diagonal components of the 4-tensor deformations ii
 

in
 
the

 
expression (1.22.9) simpli-

fies to  

                                           ii 
(–)

 = ½ [(1 + li
(–)

)
2
 – 1] gii0

(–)
,                                            (1.22.10)     

It follows from [17] that:  
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Fig. 1.22.1. Relationship sections    

of ds
()

 and of ds
()

 
\ 

 

Fig. 1.22.2. If you project such a 

double helix onto an appropriate 

plane, then at the intersection of 

any two of the resulting curves, 

the corresponding tangents will be 

perpendicular to one another 
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                    (1.22.11)  

If the deformation of ij 
 

is small, by expanding the expression (1.22.11) along a row, using 

only the first member of the series, we obtain the relative elongation subcont  

                                                              
)(0

)(
)(




 

ii

ii
i

g
l


.                                                          (1.22.12) 

Likewise, the local deformation of the inner side of the portion of the 2
3
-mn-vacuum region 

(average antisubcont) is defined by the expression  

                             ds
(+)2

 – ds0
(+)2

 = (gij
(+)

– gij0
(+)

)dx
i
dx

j
 = 2ij

(+)
dx

i
dx

j
,                            (1.22.13)  

                        where  

                                                 ij
(+) 

= ½(gij
(+)

 – gij0
(+)

)                                                  (1.22.14)   

are the 4-tensor deformations of the local antisubcont region;  

 

                                  ds0
(+)2

 = gij0
(+)

dx
i
dx

j
  with signature (– + + +)                               (1.22.15)   

is the metric of the uncurved state of the antisubcont;  

                            ds
 (+)2

 = gij
(+)

dx
i
dx

j
  with the same signature (– + + +)                        (1.22.16)   

which is a metric of the curved state of the antisubcont region.  

The relative elongation of the antisubcont region is given by  

                  1
)(0

)(

)(0

)(0)(

)( 













ds

ds

ds

dsds
l .             (1.22.17)  

Define the 4-tensor deformations of a double-sided 2
3
-mn-

vacuum as the average lengths of  

         ij
(±) 

= ½ (ij
(+)

 + ij
(–)

) = ½ (ij
(– + + +) 

+ ij
(+ – – –)

),         (1.22.18)     

or, using (1.22.4) and (1.22.14)  

ij
(±) 

= ½(gij
(+)

 + gij
(–)

) – ½ (gij0
(+) 

+ gij0
(–)

) = ½(gij
(+) 

+ gij
(–)

), (1.22.19)  

since, according to the “vacuum condition” (1.4.6):  

                  gij0
(+)

 + gij0
(–) 

= gij0
(– + + +) 

+ gij0
(+ – – –) 

= 0.   

The relative elongation of the local portion of the two-sided 

2
3
-mn-vacuum region li

(±) 
in this case should be calculated using 

formula 

                             )()(
2

1)(   iii lll ,                        (1.22.20)  

where  
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                                    (1.22.21)  

 Since in any case one of the components of gij0
 

or gij0
(+) 

is negative, the relative elongation 

(1.22.20) may be a complex number.  

In this regard, we note the following important fact. If both sides of the expression (1.22.19) 

multiplied by dx
i
dx

j
, is obtained by averaging the quadratic form  

                                                  ds
(±)2 

=
 

2
1 (ds

(–)2
+ ds

(+)2
),                                               (1.22.22)  

resembles the Pythagorean theorem c
2 

= a
2 

+ b
2
. This means that the line segments ( 2

1 )
1/2ds

(–)
 and 

( 2
1 )

1/2ds
(+)

 are always mutually perpendicular in relation to each other: ds
 

ds
(+) 

(Figure 1.22.1), and 

two lines directed in the same direction can be always perpendicular to each other only when they form 

a double helix (Figure 1.22.2).  

Thus, the average metric (1.22.22) corresponds to the length “braid”, consisting of two mutually 

perpendicular coils s


 and s
(+)

. In this case, as the average relative elongation (1.22.20), a portion of 

the “double helix” can be described by a complex number  

                                                  ds
 (±)

= 2
1 (ds

 (–)
+ids

 (+)
),

                                                      
(1.22.23)

                                                                    

which is equal to the square of the module (1.22.22).  

Definition 22.1 A k-braid is the result of averaging the metrics with different signatures 

(where k = the number of averaged metrics, i.e. the number of “threads” in the “braid”).  

In particular, the averaged metric (1.22.22) is called a 2-braid, since it is “twisted” from the 2 

lines (“threads”): ds
 = ds


 and  ds

 
= ds

( + + +) 
.  

In the following, going to a deeper level from these 16, the metrico-dynamic properties of the 

local portion of 2
6
-mn-vacuum is characterized by a superposition length (i.e., the additive superposi-

tion or averaging) of sixteen 4-metrics with all 16 possible signatures (1.11.5), i.e. a 16-braid:  

 

                          ds
2
 = 1/16 (ds

(+ – – –)2 
+ ds

(+ + + +)2 
+ ds

(– – – +)2 
+ ds

(+ – – +)2  
+  

 

      + ds
(– – + –)2  

+ ds
(+ + – –)2  

+ ds
(– + – –)2  

+ ds
(+ – + –)2 

+                             (1.22.24)  

              

                                          + ds
(– + + +)2 

+ ds
(– – – – )2 

+ ds
(+ + + –)2  

+ ds
(– + + –)2 

+ 

 

                   + ds
(+ + – +)2  

+ ds
(– – + +)2  

+ ds
(+ – + +)2  

+ ds
(– + – +)2

) = 0. 

   

In this case, we have sixteen 4-tensors deformations of all kinds of 4-spaces  
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where 

                                                            ij
(p) 

= ½ (сij
(p)  

– сij0
(p)

)                                                    (1.22.26)     

is the 4-tensor deformations in the p-th 4-subspace;  

cij0 
(p) 

– the metric tensor of the uncurved portion of the p-th 4-subspace;     

cij 
(p)  

– the metric tensor of a curved portion of the same p-th 4-subspace.  

We consider the 16-sided 4-tensor deformationsii(16)  on a local portion of a 2
6
-mn-vacuum 

whose length equals    

                        ij(16)
 
= 1/16 (ij 

(1)
+ ij 

(2)
+ij

(3)
+ij

(4)
+ij

(5)
+ij

(6)
+ij

(7)
+ij

(8)
+ij

(9)
+  

                                          +ij
(10)

+ij
(11)

+ij
(12)

+ij
(13)

+ij
(14)

+ij
(15)

+ij
(16)

),                           (1.22.27)                      

and the relative elongation of the local portion of the “vacuum” in this case can be calculated by the 

formula  

                                    li
 
(16)

 
= η1 li

 (1)
(16)

 
+  η2 li

 (2)
(16)

 
+  η3 li

 (3)
(16)

 
+…+ η4 li

 (16)
(16)

 
,                     (1.22.28)  

where  

                                                              1
2

1
)(0

)16()(

)16( 
p

ii

iip

i
c

l


.                                                  (1.22.29) 

where ηm (where m = 1, 2, 3, ..., 16) are the orthonormal basis objects satisfying the relation of a anti-

commutative Clifford algebra  

                                                        ηmηn + ηnηm = 2δmn,                                                 (1.22.30)    

whereby δnm is the unit 16 16 matrix.  

This portion then consists of sixteen braid “threads”:  

 

                            ds
 
(16)

 
= η1 ds

(+– – –)   
+  η2 ds

(+ + + +)   
+  η3 ds

(– – – +) 
+ η4 ds

(+ –  – +) 
 +   

                 + η5 ds
(– – + –)

  + η6 ds
(+ + – –)   

+  η7 ds
(– + – –)

  + η8 ds
(+ –  + –)

  +                       

                                     + η9 ds
(– + + +)

 +
 
η10

  
ds

(– – – –)
 + η11 ds

(+ + +  –)
 + η12 ds

 (– + + –)
 + 

                                     + η13 ds
(+ + – +)

 +
 
η14

  
ds

(– – + +)
 + η15 ds

(+ – + +) 
+ η16 ds

(– +  – +)
 = 0.          (1.22.31) 

                                                           

If all the linear forms ds


, ds
(+ + + +)

, ... , ds
(+  +) 

can be represented in a diagonal form, then 

in accordance with (1.14.11) expression  (1.22.31) can be represented in spin tensor form  
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There are even deeper, 2
n
-sided levels which arise from  consideration of the metric - dynamic 

properties of “vacuum” (paragraphs 1.2.9, 1.2.13 in [5]). Continuing in this manner, the number of met-

ric tensor components goes to infinity.  
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23. The physical interpretation of non-zero components of the metric tensor  

Let the metric-dynamic state of the two 4-dimensional local portion of the 2
3
-mn-vacuum have 

the given metrics (1.21.4) and (1.21.6). Then, the non-zero components of the metric tensor (1.21.5) 

and (1.21.7)    
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define the local spatial curvature of the 3-dimensional “vacuum” cell. Here the subscripts α, β corre-

spond to 3-dimensional considerations (α, β = 1,2,3).  

The scalar curvature of a 3-dimensional cell of a “vacuum” in bilateral form is determined by 

averaging the expression [2]  

                                                             R
(±) 

=
 

2
1 (R

(–)
+R

(+)
) ,                                                         (1.23.2) 

where the scalar curvature of each of the two sides is also determined as in GR  

                                             R
(–)

 = g
(–)αβ

Rαβ
(–)

   and     R
(+)

 = g
(+)αβ

Rαβ
(+)

,                               (1.23.3) 

                           where  
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which is the Ricci tensor of the external  or internal (+) “side”, respectively, of the “vacuum” cells;  
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(1.23.5)     

which are the Christoffel symbols of the external  or internal (+) side respectively, where g
αβ 

is re-

spectively g
αβ

 or g
(+)αβ

.  

The tension of the 3-tensor describing a 3-dimensional “vacuum” cell is given in this case by 

the averaged expression  

                                                             αβ
 (±) 

= ½ (αβ
 (+)

 +  αβ
 (–)

),                                                (1.23.6) 

where  

                                                αβ 
(–)

 = ½ (gαβ
(–)

 – g αβ0
(–)

),                                        (1.23.7)  

which are the 3-tensor deformations of the outer side “vacuum” cells;  

 

                                                 αβ 
(+)

 = ½ (gαβ
(+)

 – g αβ0
(+)

)                                       (1.23.8) 

 

which are the 3-tensor deformations  of the inner side of the “vacuum” cell. 
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The theory of local deformation of 3-dimensional regions of  the “vacuum” can be developed by 

analogy with the conventional theory of elasticity (atomistic) of solid elasto-plastic media [13] taking 

into account the two-way (or 2
n
-sided) properties.  

 

1.24 The physical interpretation of zero components of the metric tensor 

To explain the physical meaning of the metric tensor zero components (1.21.5) and (1.21.7)  
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         (1.24.1)  

we use kinematics of the dual of the 2
3
-mn-vacuum region.  

Let the original (undisturbed and uncurved) state of a 2
3
-mn-vacuum be over a given set of met-

rics (1.7.3) and (1.7.4)  

   ds0
(–)2

= с
2
dt

2 
– dх

2
 – dy

 2
 – dz

 2  
=  ds

(–)
ds

(–)
  =    сdtсdt– dxdx– dydy– dz

 
dz,            (1.24.2)              

   ds0
(+)2

= – с
2
dt

2 
+dx

2
+ dy

 2
+ dz

2 
=  ds

(+)
ds

(+)
 =  – сdtсdt+ dxdx+ dydy+dz

 
dz,           (1.24.3)         

              where  

                     ds
(–)
 =   с

 
dt + idx+ jdy+ kdz

 
      – mask of the subcont;                             (1.24.4) 

                    ds
(–)
 =   с

 
dt+ idx+ jdy+ kdz

 
  – interior of the subcont;                          (1.24.5) 

                    ds
(+)
 = – с

 
dt+ idx+ jdy+ kdz

 
     – mask of the antisubcont;                        (1.24.6) 

                    ds
(+)
 =   с

 
dt– idx– jdy– kdz

 
  – interior of the antisubcont,                    (1.24.7) 

which are affine aggregates, with the quaternion multiplication table for imaginary units of this type 

given in Table 1.24.1.  

                                                                                                      Table 1.24.1 

 

  

 

 

 

Definition 24.1 A mask of a subcont is a 4-dimensional affine length interval of type  

                                            ds
 
= c dt+ idx+ jdy+ kdz.

 
 

Definition 24.2 An interior of a subcont is a 4-dimensional affine length interval of type  

                                           ds
 
= c dt+ idx+ jdy+ kdz.

  

Definition 24.3 A mask of an antisubcont is a 4-dimensional affine length interval of type  

 i j k 

i –1 k –j 

j –k –1 i 

k j –i –1 
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                                           ds
(+) 
=  c dt+ idx+ jdy+ kdz.

 
 

Definition 24.4 An interior of an antisubcont is a 4-dimensional affine length interval of type  

                                           ds
(+) 
= c dt idx jdykdz.

 
 

We consider four cases:  

1). In the first case we have the mask and the interior of the external and internal sides of the 2
3
-

mn-vacuum region (i.e. subcont and antisubcont) moving relative to the initial stationary state along 

the axis x with the same speed vx , but in different directions. This is formally described by the coordi-

nate transformation:  

                          t = t,     x = x + vx t,     y=  y,     z= z    – for a mask;                           (1.24.8) 

                         t= t,     x = x – vxt,     y= y,     z= z    – for an interior.                     (1.24.9)  

Equality of the modules of the velocities vx  for a mask and an interior leads to the “vacuum con-

dition”, which requires that every movement in the “vacuum” there is a corresponding antimovement.  

Differentiating (1.24.8) and (1.24.9), and substituting the results into the differential metrics 

(1.24.2) and (1.24.3), we obtain a set of metrics 

                                     ds
(–)2

=   (1+ vx
2
/с

2
)c

2
dt

2
– dx

2
 – dy

2
 – dz

2
;                                   (1.24.10) 

                                     ds
(+)2

= – (1+ vx
2
/с

2
)c

2
dt

2
+ dx

2
+ dy

2
+dz

2
 ,                                   (1.24.11) 

describing the kinematics of the joint motion of the exterior and interior sides of a 2
3
-mn-vacuum re-

gion (subcont and antisubcont) by applying the principle of “vacuum balance”.  

                                                                     ds
(–)2 

+ ds
(+)2 

= 0. 

2). In the second case, suppose masks and interiors of a subcont and an antisubcont move rela-

tive to their original stationary state in the same direction, along the x-axis with the same velocity vx . 

This is formally described in coordinate transformations:  

                           t= t,     x = x – vx t,     y=  y,     z= z     – for a “mask”                      (1.24.12) 

                           t= t,    x = x – vxt,     y= y,    z= z     – for an “interior”        (1.24.13) 

Differentiating (1.24.12) and (1.24.12) and substituting the results of differentiation in the met-

ric (1.24.2) and (1.24.3), we obtain a set of metrics:  

                         ds
(–)2 

=    (1– vx
2
/с

2
)c

2
dt

2
 + vxdxdt + vxdtdx – dx

2
 – dy

2
– dz

2
,                (1.24.14) 

                         ds
(+)2 

= – (1– vx
2
/с

2
)c

2
dt

2
 – vxdxdt – vxdxdt + dx

2
+ dy

2
+ dz

2
.                 (1.24.15)   

In this case, the vacuum balance is also observed, as ds
2 

+ ds
(+) 2 

= 0, but there are additional   

terms vxdxdt which coincide.  

The null metric tensor components (1.24.1) in the second case are in most cases equal to 



91 

 

  

                                     

,

.........0

.........0

.........

00/1 22

)(

0



















 

 x

xx

j

v

vсv

g        .

.........0

.........0

.........

00/1 22

)(

0

























 x

xx

i

v

vсv

g

               

(1.24.16)  

3) Let the mask and the interior of a subcont and an antisubcont (exterior and interior of sides 

2
3
-mn-vacuum region) rotate about the z-axis in the same direction with an angular speed . This is 

described by the change of variables: 

                           t = t,   x = x cos t – y sin t,   z = z,   y= x sin t + y cos t,                (1.24.17)    

                           t = t,   x = x cos t – y sin t,   z = z,   y = x sin t + y cos t.           (1.24.18) 

Differentiating (1.24.17) and (1.24.18) and substituting the results in differentiation of the met-

ric (1.24.2) and (1.24.3), we obtain the metrics [10]  

                   ds
(–)2

=    [1– ( 
2 

/с
2
)(х

2 
+у

2
)]с

2
dt

2
+2 уdxdt – 2 хdydt – dx

2 
– dy

2 
– dz

2
,         (1.24.19) 

                   ds
(–)2

= – [1– ( 
2 

/с
2
)(х

2 
+у

2
)]с

2
dt

2
–2 уdxdt +2 хdydt + dx

2 
+ dy

2 
+ dz

2
,        (1.24.20) 

In cylindrical coordinates, 

                              
2
= х

2
+ у

2
,      z = z ,      t = t ,     = arctg(y/x) –  t.                        (1.24.21) 

the metrics (1.24.19) and (1.24.20) take the form  

             ds
(–)2

=    (1 –  
2 

2
/с

2
) с

2
dt

2 
–  

2 /с ddt –  
2 /с dtd – d 

2 
–

  
2
d 

2 
–

 
dz

2
,     (1.24.22)       

             ds
(+)2

 = – (1 –  
2 

2
/с

2
) с

2
dt

2 
+ 

2 /сddt + 
2 /сdtd + d 

2 
+ 

2
d 

2 
+

 
dz

2
.     (1.24.23) 

The components of the metric tensor (1.24.1) equal  
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       (1.24.24)  

4) The case where the mask and the interior of a subcont and an antisubcont rotate in mutually 

opposite directions with angular speed can also be considered. This is described by the change of 

variables:  

          t = t,      x = x cos t – y sin t,        z = z,    y = x sin t + y cos t,           (1.24.25) 

               t= t,      x = – x cos t + y sin t,    z= z,    y = – x sin t – y cos t.       (1.24.26) 

and leads to similar results.  

From the above examples it is clear that the null metric tensor components are associated with 

the translational and/or rotational movement of various of sides of a 2
3
-mn-vacuum region.  

The state of motion of the local 3-dimensional region of the “vacuum” is characterized by the 

average of the null-metric tensor components  
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In all four cases considered, the averaged components of the null metric tensor (1.24.27) equals 

to zero   0)(

0

)(

02
1)(

0  

iii ggg . This means that mutually opposite processes can occur inside a por-

tion of the “vacuum”, but in general, this portion remains fixed within the local 3-dimensional region of 

the “vacuum”.  

However, there are cases where the intra-vacuum processes cannot compensate for each other 

locally, only globally, due to phase shifts. In this case the local 3-dimensional “vacuum” portion may 

participate (as a whole) in a closed intricate motion. Consider an event at a specific example. Suppose 

at some site in the “vacuum” there is a kinematic-vacuum process such that  

      t = t,     x = x + v1x t,      y=  y,     z= z    – for the mask of a subcont;                    (1.24.28) 

      t= t,     x = x – v2x t,     y= y,     z= z   – for the interior of a subcont.                 (1.24.29)                          

      t = t,     x = x + v3x t,      y=  y,     z= z    – for the mask of an antisubcont;            (1.24.30) 

      t= t,     x = x – v4x t,     y= y,     z= z   – for the interior of an antisubcont,         (1.24.31)    

where v1 x ≠ v2 x ≠ v3 x ≠ v4 x, but the balance of overall observed motion equals 

                                                        v1x – v2x + v3x – v4x = 0.                                                  (1.24.32)   

In this case, the outer and inner sides of a 2
3
-mn-vacuum region (subcont and antisubcont) are 

described by a set of metrics  

 

                 ds
(–)2

=   (1+ v1x
 
v2x/с

2
)c

2
dt

2
 – v1xdtdx + v2xdxdt– dx

2
 – dy

2
 – dz

2
;                    (1.24.33)    

                 ds
(+)2

= – (1+ v3x
 
v4x/с

2
)c

2
dt

2
 + v3xdtdx – v4xdxdt + dx

2
 + dy

2
 + dz

2
,                 (1.24.34) 

wherein the non-zero average nul-metric tensor components (1.24.27) are of the form  

          g00
 (±) 

= (v1x
 
v2x – v3x

 
v4x)/2с

2
,    g01

 (±) 
= (v3x – v1x)/2,     g10

 (±) 
= (v2x – v4x)/2,          (1.24.35) 

whereby                                                (v1x + v3x) – (v2x + v4x) = 0.                                      (1.24.36) 

This means that some local region of the local 3-dimensional “vacuum” is involved in an intri-

cate movement along the x-axis, so the principle of the “vacuum balance” is formally complied with in 

relation to the total amount of motion (1.24.32).  

 

1.25 Maximum velocity of mn-vacuum layers 

We ask the question: “Can the sides of a 2
3
-mn-vacuum region have any given speed?”  

Consider this question as an example of the metric (1.24.14) 

                    ds
(–)2 

= (1– vx
2
/с

2
)c

2
dt

2
 + 2vxdxdt – dx

2
 – dy

2
– dz

2
.                          (1.25.1)  

We develop (1.25.1) by completing the square  
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and introduce the notation  

                          ,
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c
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cdt
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v
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xx


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2
zzyy

c

v

х
xtt
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



                   (1.25.3)  

In this notation, the metric (1.25.1) takes the form  

                                          
222222)( zdydxdtdcds 
.                      (1.25.4)  

The physical meaning of the expressions (1.25.2) to (1.25.4) is fundamentally different from the 

axioms of SR and GR of Einstein, so further clarification is required. Einstein's postulate of the con-

stancy of the speed of light in “vacuum” remains unchanged. However, if one of the sides of a 2
3
-mn-

vacuum region moves as a unit with the speed vx [see (1.24.12) to (1.24.15)], then for a third-party ob-

server located on the fixed lidar (Figure 3.1.) the direct light beam will propagate with a velocity  

                                              

.

1

1'

2

22

2

c

v

x

cdt

v

c

v
сс

x

xx





                                      

(1.25.5)  

This is similar to the way a stationary observer measures the speed of waves propagating on the 

river. This observer finds that the velocity of propagation of the surface perturbation depends on the 

rate of flow of the river, whereas the water relative velocity of propagation of disturbances remains 

constant and depends only on the properties of water (density, temperature, impurities, etc.).  

From the expressions (1.25.3) we see that, in the cases (1.24.12) to (1.24.15), the propagation 

velocity of the outer side 2
3
-mn-vacuum region (subcont) cannot exceed the speed of light. At low 

speeds (vx << c) to the casual observer velocity c' is somewhat smaller than the speed of light 

                                                             
.'

cdt

xv
сс x

  
 

Thus, in the case of (1.24.12) to (1.24.15), despite the fact that the interpretation of the mathe-

matical apparatus of the cited theories are different, the main physical findings remain unchanged.  

However, in the case of (1.24.8) to (1.24.11), the situation is different. Consider this realization 

of intra-vacuum processes in an example in which the subcont motion is described by the metric 

(1.24.10)  

                                      ds
(–)2 

= (1+ vx
2
/с

2
)c

2
dt

2
– dx

2
 – dy

2
 – dz

2
.                                   (1.25.6)  
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In this case, the introduction of the notation  

                                           
2

2

1'
c

v
сс x   zzyyxxtt  ,,,'                             (1.25.7)         

leads metric (1.25.6) to the invariant form (1.25.4), but no restrictions on the counter speed vx of the 

mask and interior subconts arise. This fact requires a separate detailed consideration because it allows 

for the possibility of organizing  intra-vacuum superluminal communication channels.   

 

1.26 Inert layer properties of a mn-vacuum 

Returning to the consideration of metrics (1.24.2) and (1.24.3)  

                       ds
(+ – – –)2

 = ds
(–)2 

=    c
2
dt

2
 – dx

2 
– dy

2 
– dz

2
,                                  (1.26.1)    

                                   ds
(– + + +)2

 = ds
(+)2 

= – c
2
dt

2
 + dx

2 
+ dy

2 
+ dz

2
 .                                (1.26.2)  

We bring the quantity с
2
dt

2
 to the right sides of the equations of these metrics, and outside the 

parentheses:   

                                                   
)1(

2

2
222)(

c

v
dtcds 

                                                     
(1.26.3)

 

                                                  
)1(

2

2
222)(

c

v
dtcds 

,
                                                   

(1.26.4)
 

where v = (dx
2 

+ dy
2 

+dz
2 
)
1/2

/dt = dl/dt is a 3-dimensional velocity.  

Extract the root of the two sides of the resulting expressions (1.26.3) and (1.26.4). As a result, 

according to the notations introduced in (1.24.4) to (1.24.7), we obtain  

                
2

2
)( 1 '

c

v
cdtds 

    
– for the mask of the subcont                             (1.26.5)

 

                                 
2

2
)( 1 ''

c

v
cdtds 

  
– for the interior of the subcont;                         (1.26.6) 

                            
2

2
)( 1'

c

v
icdtds 

   
– for the mask of the antisubcont;                     (1.26.7) 

                      
2

2
)( 1'

c

v
icdtds   – for the interior of the antisubcont.                  (1.26.8) 

For example, consider the 4-dimensional velocity vector of the mask of the subcont [10]  

                                              ui
(–) 

= dx
i 
/ds

(–)
’.                                                      (1.26.9) 

 Substituting (1.5.26) in (1.9.26) gives 4-velocity components [10]  
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Let a given mask of the subcont move only in the direction of the x-axis. Then the components 

of its 4-velocity are given by 
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We now define the 4-acceleration mask of the subcont  
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and consider only the x-component  
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where the value of  
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has the dimensions of the x-component of the 3-dimensional acceleration.  

We differentiate the left side of (1.26.14)   
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and introduce the notation  

                                                            dvx/dt = аx
(–)

' .                                                   (1.26.16)  

The expression (1.26.15) takes the form  
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where ax
 

is the actual acceleration portion of the mask of the subcont, taking into account its inert 

properties; and ax


' is the ideal acceleration of the same portion of the mask of the subcont excluding 

the inert properties.  

We represent the expression (1.26.16) in the form  

                                                         
')()()(   xxx aa  ,                                          (1.26.18)  
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is a dimensionless inertia coefficient that relates the actual and ideal acceleration of the local section of 

the mask of the subcont under consideration, and shows how the inertia (i.e. resistance to change of the 

state of motion) of this section changes with the change of its velocity. 

From the expression (1.26.19) it follows that when vx = 0, the inertial coefficient x
() 

= 1  and 

')()(   xx aa . This means that the portion of the mask of the subcont offers no resistance to the start of its 

motion. When vx approaches the speed of light as the coefficient of inertia x


tends to infinity, further 

acceleration of the mask of the subcont becomes impossible.  

Equation (1.26.18) is an analog of a massless version of Newton's second law  

                                                               Fx = max,                                                         (1.26.20)  

where Fx is the force vector component; m is the mass of the body; axis its ideal acceleration compo-

nent.  

Comparing (1.26.18) and (1.26.20), we find that in mn-vacuum dynamics, the massless inertia 

factor (coefficient)x
 

of the
 
local area corresponding to the mask of the subcont is an analogue of the 

inertial mass density of a continuous medium in post-Newtonian physics.    

Sequential substitution (1.26.6) to (1.26.8) in the expression (1.26.9) can be formulated analo-

gously to the inertia factorsx
, x

(+), x
(+)for thethree remaining affine layers of the 2

3
-mn-
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vacuum region. The total coefficient of inertia of the local portion 2
3
-mn-vacuum is a function of the 

lengths of all four inertial coefficients    

                                           х
(±)

 = f (х
(–) , х

(–), х
(+), х

(+) ).                                   (1.26.20)  

The form of this function will be defined in the exposition of mn-vacuum dynamics in subse-

quent articles. 

1.27 Kinematics gap of a local region of the “vacuum” 

For in much wisdom is much grief; and he that 

increaseth knowledge increaseth sorrow.  

                                       Ecclesiastes 1:18   

 

The theory of light-geometry of  “vacuum” opens up opportunities for the development of “zero” 

(vacuum) technology. The mathematical apparatus of the Algebra of Signatures (АS) allows one to 

predict a number of vacuum effects [4, 5] which cannot in principle be predicted by modern physics.  

In this article, we consider only the kinematic aspects of the possibility of “rupturing” the “vac-

uum” of the local area.  

We integrate expression (1.26.14) [11]:  
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                                 (1.27.1)  

Integrating (1.27.1) again and assuming that x0 = 0 at t = 0, we have the following change in the 

distance along the axis x under accelerated motion of the mask of the subcont:  
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Let the original (i.e., stationary) state of a local area of a subcont in the given metric (1.24.2) be 

                                          
222222)( zdydxdtdcds 

.                     (1.27.2)  

Uniformly accelerated motion of the portion along the x-axis is then the coordinate transfor-

mation formally specified as in [11]: 
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(1.27.3)  

Differentiating the coordinates (1.27.3), and substituting the results of the differentiation into 

(1.27.2), we receive the metric [11]: 
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describing the movement at constant acceleration of a local section of the subcont (i.e., the inner side of 

the side of the  2
3
-mn-vacuum extent the the direction of the x-axis.   

If, in the same subcont region, an additional flow with a small but uniform decrease of velocity 

is created, i.e., negative acceleration  
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                                                   (1.27.5)  

then, performing calculations similar to (1.27.1) to (1.27.4), we obtain a metric  
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The mean metric-dynamic state of the local area will be characterized by the average subcont 

metric  
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with signature . Where we see that in  

                 whereby         ,1
4

44


c

taх   or   |ах|t = c  or   |ах| = c /t,                                     (1.27.8) 

the first and second terms in the average metric (1.27.7) become infinite. This singularity may be inter-

preted as a “rupture” of the given region of the subcont (i.e., the outer side of the 2
3
-mn-vacuum re-

gion).  

The “rupture” of a subcont is a consequence of incomplete action. To complete the “gap” of the 

local portion of the 2
3
-mn-vacuum region, it is necessary to “rupture” its inner side, the metric de-

scribed by (1.26.2) with the signature ( + + +). For this purpose, in the same region as the antisubcont 

in a mn-vacuum, a similar flow  with a small but uniform acceleration is determined by the average of 

the corresponding metric.   
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with signature ( + + +), which “ruptures” in the same conditions  

                                    ,1
4

44


c

taх   or   |ах|t = c,   or  |ах| = c /t.                                     (1.27.10)     

Averaging the metric (1.27.7) and (1.27.9) leads to the implementation of the vacuum condi-

tions  

                                     0)( 2)(2)(
2

12   dsdsds ,                                       (1.27.11)     

which, in this situation, is equivalent to Newton's third law, i.e., “reaction equals the negative of the  

action in equilibrium”  

                                  Fx
(+) 

– Fx
(–) 

 = 
 
max

(+) 
– max

(–)
 = 

 
ax

(+) 
– ax

(–)
.                                (1.27.12) 

That is, the process of the “gap” in a local “vacuum” region is similar to the conventional (atom-

istic) gap of a solid body in which, essentially, the larger the applied forces, the more precise the result-

ing acceleration.  

It is possible that the “gap” of the “vacuum” conditions described above is formed in collisions 

of elementary particles in particle accelerators. A strong collision of particles leads to “cracks” in the 

web of the vacuum, while closing these cracks creates a variety of new “particles” and “anti-particles” 

(like broken glass shards).  

 

Conclusions 

The light-geometric Algebra of Signatures should be characterized with the term “empty-metric” 

of “vacuum” (“empty”) under investigation, and not Gaia (ancient Greek. Γῆ, Γᾶ, Γαῖα - Earth). How-

ever, all the theory developed here is entirely suitable for the study of continuous atomistic media (such 

as water or solids), with the medium probed not by light rays, but by the sound waves that propagate in 

these media at constant velocity.  

We list the main differences between the Algebra of Signatures (AS) and the theory of General 

Relativity (GR) proposed by Einstein.  

1. GR considers only one metric, such as the signature of  (1.7.5)  

                                                   ds
(+ – – –)2 

= gij
(–)

dx
i
dx

j    
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and therefore unilateral 4-dimensional space, which in some cases leads to paradox, while the AS takes 

into account the totality of the 16 metrics (1.11.1) [or (1.20.4)] 

 

                                         ds
(+– – –)2

      ds
(+ + + +)2     

 ds
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     ds
(+ –  – +)2 

 

                                         ds
(– – + –)2

      ds
(+ + – –)2       
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                                         ds
(– + + +)2       
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(– – – – )2

 
 
   ds

(+ + +  –)2        
ds

 (– + + –)2
  

                                   ds
(+ + – +)2       

ds
(– – + +)2     

  ds
(+ – + +)2

      ds
(– +  – +)2

,    

 

and thus the full set of 16-type 4-dimensional spaces with all the signatures (or topologies) (1.13.1) 

 

 

 

 

 

 

 

when averaging, which can be simplified to a large class of problems to a "two-sided" consideration. 

That is, in the Signature Algebra, the minimum number of "sides" of vacuum length must be at least 

two (like two sides of a sheet of paper) with the corresponding conjugate metrics: 

                         ds
(– + + +)2

 = ds
(–)2 

= gij
(–)

dx
i
dx  with signature (– + + +) - Minkowski spaces; 

                         ds
( + – – – )2

 = ds
(+)2 

= gij
(+)

dx
i
dx

j
  with signature (+ – – –)  - Minkowski antispaces. 

This approach allows us to identify ways to solve a number of tasks that previously did not re-

spond to analysis. For example, with the proposed metric-dynamic model of the elementary particles of 

the standard model [2, 3], it becomes possible to solve the problem of the baryon asymmetry of matter; 

with the proposed technology, the “gap” in a local region of the “vacuum” can be detected [5], it opens 

up possibilities for a theoretical justification of the use of intra-vacuum currents for moving in space 

and obtaining energy from the "vacuum", and much more. 

It is possible that this approach will be approved by philosophers, since it contains: the septe-

nary of dialectics, zero balance and an attempt to realize the Infinite. 

Recall that there are four basic techniques for realizing the Infinite: 

I). Isolation in the Infinite Periodic Structures. At the same time, the study of one period applies 

to all similar periods, i.e. for all Infinity; 
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H). Projecting unlimited infinity into limited infinity. For example, each point of the infinite 

plane can be projected onto the surface of the ball, while the entire periphery of Infinity that eludes ob-

servation is before the gaze of the researcher; 

V). Reformatting (transformation) of Infinity, so that the last element of the infinite sequence is 

its first element, and vice versa, the first element becomes the last. 

H'). Allocation of the class of Infinities, dividing which by each other leads to finite numbers. 

For example, when determining the speed v = Δx/Δt, the segment Δx and the interval Δt can be infinite-

ly small or infinitely large, but their ratio always remains a finite number v. 

All of these types of awareness of Infinity are used in the Algebra of signature. 

2. Within the Algebra of signatures, time t is not an attribute of the local region of a “vacuum”, 

but rather it characterizes the observer's ability to regulate the duration of sensation. Therefore, unlike 

in GR, in AS the interval dt remains unchanged by the bending of the “vacuum”. Instead of changing 

the flow of time, a curved portion of the “vacuum” is proposed to take into account the intra-vacuum 

flow (i.e. shifting layers of the “vacuum”). In Section 24, it was shown that the zero components of the 

metric tensor (1.24.1) 
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 can be connected with the laminar and turbulent movements of the vacuum-layers. This approach al-

lows us to consider a 3-dimensional “vacuum” as a multilayered solid elasto-plastic medium.  

3. Within Algebra of Signatures there is not just one, but four multiplication rules (1.10.6) to 

(1.10.9) for the “vacuum”. Later it will be shown that the commutative and anticommutative properties 

of the “vacuum” and “antivacuum” allow us to ensure the stability of true emptiness.  

4. The auxiliary mathematical space described by Algebra of signatures supersymmetric, since 

every point is characterized by commutative and anticommutative numbers.  

The auxiliary mathematical spaces of AS are supersymmetric, because at each of their points 

both commutative and anticommutative operations on sets of numbers are given. 

Thus, axiomatic light-geometry “vacuum” practically coincides with the axioms and conse-

quences of Einstein’s GR (locality, causality, Lorentz invariance, the general covariance equations of 

extremity action, etc.), except for:  

- a different relationship to time;  

- different interpretations of the zero components of the metric tensors g00 and g0i;  
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- taking into account all 16 (actually 64) possible signatures;  

- supersymmetric events of spaces.  

The full formal mathematical apparatus of Algebra of signatures (AS) (differential multi-

signature, multilayer supersymmetric light-geometry)  becomes more and more complicated as it ap-

proaches the study of the properties of empty infinity. But initially, there are algorithms for collapsing a 

set of additional (technical) dimensions before describing the metric-dynamic properties of the                  

3-dimensional volume of the “vacuum”, which can vary during the time as measured by an outside ob-

server.  

Constant observance of the "vacuum balance" allows Alsigna to avoid the paradoxes character-

istic of all "one-sided" theories. And Alsigna's constant adherence to the Algorithms for revealing the 

Four-Letter Great Name GOD does not allow her to stray from the Path Illuminated by this Name. 

The question inevitably arises: - Why so complicate the concept of the simplest object - the           

3-dimensional volume of "vacuum" ("prostate")? There are several answers to this question: 

- firstly, dialectics says that the “simplest” must be at the same time the most “complex”. The 

development of the physical and mathematical aspects of the study of the "vacuum" will lead to the so-

lution of a number of ontological and epistemological problems of modern philosophy. 

- secondly, the formal mathematical apparatus creates a logical platform for planning real ac-

tions on the object of research. For example, an in-depth understanding of the basics of the Signature 

Algebra will lead to the realization that the local volume of the "vacuum" can be: "frozen", "evapo-

rated", "blown up", "split into pieces", "stratified", "used as a source energy ", etc. Vacuum hypotheses 

Alsigna can form the basis for the development of many "zero" (vacuum) technologies that will change 

the technical appearance of human civilization (if not destroy it). 

To show that even with a two-sided consideration of the 2
3
-m,n-vacuum extent, vacuum effects 

can be predicted on the basis of the Signature Algebra methods, which, in principle, cannot be de-

scribed in the framework of one-sided theories developing on the basis of SRT and GRT A. Einstein. 

Thirdly, and this is the most important thing, the light geometry of Alsigna is built according to 

the Algorithms of Disclosure of the Four-Letter Name of the CREATOR of the Universe [4]. Therefore, 

Alsigna is an attempt to unite the scientific, philosophical and religious aspects of the Ontology of Be-

ing within the framework of a single Knowledge. This is an attempt to realize the Continuous INFI-

NITE through the discrete infinite. And in this Alsigna sees his service to the Great and Terrible Name 

of GOD. 
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Revealing the manifestations of the Four-Letter Name of the CREATOR in the Worlds (Levels 

of the Living TORAH) is not just G-seeking and B-building, it is the only opportunity for human civili-

zation to survive with the development of "zero" (vacuum) technologies. 

Without the development of "Vacuum Morality", the study of the Infinite Structure of "vacuum" 

is extremely dangerous. 
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Index number of definitions of new terms 

Definitions of new terms may be found in the text under the numbered Definitions noted below:    

Algebra of Signatures (Alsigna) : Definition 11.2;  

Alsigna : Definition 11.2;  

Antisubcont : Definition 7.5;  

Base : Definition 8.1; 

Chess analogy : Definition 11.1;  

Cross bundle of a “vacuum” : Definition 16.1;  

Inner side of a 2
3
-mn-vacuum region (antisubcont) : Definition 7.3;  

Interior of an antisubcont  : Definition 24.4;  

Interior of a subcont : Definition 24.2;  

           Yi-Ching analogy : Definition 8.3; 

k-braid : Definition  22.1;  

Longitudinal separation of a “vacuum” : the Definition 2.3;  

Longitudinal “split zero” : Definition 12.2;  

Mask of an antisubcont  : Definition 24.3;  

Mask of a subcont : Definition 24.1;  

Newtonian vacuum (“vacuum”) : Definition 1.1;  

Orthogonal three-basis : Definition 6.1; 

Outer side 2
3
-mn-vacuum region (subcont) : Definition 7.2;  

Qabbalistic analogy : Definition 16.2;  
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Rankings : Definition 10.2;  

Ray of light : Definition 2.1;  

Signature : Definition 10.1;  

Stignature : Definition 8.2;  

Subcont : Definition 7.4;  

Transversely “split zero” : Definition 12.1;  

True zero : Definition 4.1 

“Vacuum”: Definitions 1.1, 12.5;  

Vacuum balance : Definition 12.3;  

Vacuum conditions : Definition 12.4;  

mn-vacuum : Definition 2.2;  

mn-vacuum balance : Definition № 12.3;  

mn-vacuum condition : Definition 12.4;  

2
k 
-mn-vacuum region : Definition 7.1.  
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