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4 Excited states of spherical vacuum formation cores 
Basics of stochastic (quantum) metaphysics 

 

4.1 Introduction 

From the standpoint of the Algebra of Signatures and light-geometry of the vacuum presented 

in the previous Chapters, in this Chapter the following results are obtained: 

- the excited states of cores of spherically symmetric vacuum formations are considered; 

- the principles of Stochastic (quantum) metaphysics  in the framework of the full geometriza-

tion of the physical views of the Clifford - Einstein - Wheeler are laid down. 

- metric-statistical model representations of the second and third generations of the "leptons" 

("muons", �2 -"leptons") and �F�����V�����W�����E - "quarks" are proposed. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.1.1. Fractal illustration of the core (nucleus) of a spherically symmetric vacuum formation 

 

Recall that in the Algebra of Signatures (Alsigna), particle names are given in angle quotation marks 

(guillemets), for example, «electron», «muon», etc. because metric-dynamic models of these vacuum 

formations in the light-geometry of the Alsigna are considerably different from those of the Standard 

Model or String Theory. Further explanation is given in the Appendix (“Definitions of the stochastic 

metaphysics”), which contains explanations of other special terms and notation used in this paper. 

��

4.2 States of internal ñparticelleò inside the core of a vacuum formation 

Let's first consider the behavior of an internal “particelle” inside the core of a spherical vacuum 

formation, for example, an «electron» (Figures 2.6.3, 3.2 or 4.2.1). 
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Note that in the Algebra of Signatures metric-dynamic model of a free «electron» (or e--«quark») 

is defined by a set of metrics (4.2.1) {see (2.6.22)}, which are solutions of Einstein’s field equations 

(2.6.21). 

                                                 çELECTRONè����������������������������������                          (4.2.1)��������
“Convex” multilayer vacuum formation with signature (+ – – –) 

consisting of: 
 

The outer shell of the ñelectronò 
(in the interval [�U1, �U6], Fig. 4.2.1), 

defined by a set of four metrics 
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The core of the çelectronè 
(in the interval [�U6, �U7], Fig. 4.2.1), 

defined by a set of four metrics 
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The scope of the çelectronè  

in the interval [0, �f ] (Fig. 4.2.1) 
 

                                               �� ��22222222)(
5 sin �M�T�T �G�G�U�G�U�G�W�F�G�V ������� �������� .                                           
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Fig. 4.2.1. 3D-image of a free «electron», where, in line with the terms of the  hierarchy (2.6.20): 
– The core of the «electron» is a closed spherical vacuum formation with radius �U6 ~1.7·10–13 cm; 
– The outer shell of the «electron» is a radially deformed spherically symmetric vacuum formation, extend- 

ing from the «electron's» core to the boundary of inner core of the Universe with radius �U1 ~ 3.4·1039 cm; 
– The internal particle is the core of a “protoquark” (a minuscule analogue of the «electron's» core) with      

radius �U7 ~ 5.8·10–24 cm, which is located inside the core of the «electron»; 
– The abyss��is a multilayer boundary between the outer shell and the core of the «electron»; 
– The scope is a kind of memory of the undeformed state of the vacuum area considered here. 

��

Figure 4.2.1 presents a 3D metric-dynamic image of the core of «electron» (i.e. a closed spheri-

cal vacuum formation) and its surroundings (outer vacuum shell), which was created in Chapter 2 (see 

Figure 2.6.3) and earlier in [20, 22] by analyzing a set of metrics (4.2.1). 

Let's assume that the internal “particelle” (the size of which can be neglected here) is in a con-

tinuous chaotic motion around the center of the core of the «electron», which in our case coincides 

with the origin of the coordinate system �;�<�=��(Figure 4.2.1). The probable cause of such chaotic mo-

tion of the internal “particelle” can be inherent vacuum perturbations, which permanently influence the 

jellylike core of the «electron». 

      Chaotic motion of the internal “particelle” is incessant since its total mechanical energy, �(�j�� re-

mains, on the average, constant {�V�H�H���������������D�Q�G��������������}: 
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�������������������������������������������������������������������������������������� �?�j > = ���7�j��(�[���\���]���W)>  +  ���8 �j��(�[���\���]���W)> = �F�R�Q�V�W,                             (4.2.2)             

where                                                           

���7�j(�[���\���]���W) >  – average kinetic energy of the internal “particelle” associated with its speed; 

���8 �j(�[���\���]���W) > – average potential energy of the internal “particelle” associated with the vacuum's elas-

tic properties; the zero potential is in the center of the «electron's» core. 

Analysis of the internal particelle's chaotic motion in Chapter 3 led to the derivation of the gen-

eralized Schrödinger equation (3.102) 

                                    ,  ),( ),(  +),(
2

  ),(
2

2
�W�U�W�U�8

�U

�W�U
�W

�W�U
�L �S�D�U �&�&

�\
�\�K�\

�w

�w
��� 

�w
�w

                          (4.2.3) 

where ),,,(),( �W�]�\�[�W�U �\�\ �  – a wave function, the squared modulus of which is a function of the  

probability density of the location of a wandering internal “particelle”; 

                 
� ),( �W�U�8

�&
 ���8�j (�[���\���]���W)> – average potential energy of an internal “particelle”; 
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2
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�W

�V
�K  – inertia factor of internal particelle (3.103),                        (4.2.4) 

            �! = 1.055·10-34 J·s   – Planck's constant; 

�������������������������P�S��������– mass of the internal particelle. 

whereby 
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�]�S�D�U�\�S�D�U�[�S�D�U�U�S�D�U �V�V�V�V �����                                     (4.2.5) 

is the mean standard deviation of  the positions of particles (material "points") in chaotic motion 

around the point of reference acting as "center" (Figures 4.2.1 and 4.2.2), while 

                                          )(
3
1

,,,, �]�S�D�U�\�S�D�U�[�S�D�U�U�S�D�U �W�W�W�W �����                                         

is the mean correlation (or rather autocorrelation) radius of this stochastic process. 

 

             
 

Fig. 4.2.2. Projections of a chaotically wandering internal “particelle” plotted on the Z axis against time �W, 
where �1�S�D�U���]�����2�S�D�U���]��are the root-mean-square deviation and autocorrelation radius, resp., of this random process��

 



 168 

Furthermore, �?�j,���7�j and���8�j, i.e. values expressed in terms of mass units, are replaced with the 

following massless values in the Algebra of Signatures: 

           �B�T 
L  
�S

�S

�P

�?
 – total mechanical �H�Q�H�U�J�L�X�P��of the internal particelle;          (4.2.6)                                      

�P�É 
L  
�S

�S

�P

�7
 – kinetic �H�Q�H�U�J�L�X�P��of the internal particelle;          (4.2.7)                                                      

�Q�É 
L  
�S

�S

�P

�8
– potential���H�Q�H�U�J�L�X�P of the internal particelle.                     (4.2.8)                                                  

In this case, equation (4.2.2) can be rewritten as follows: 

                                                                    �����0�j> = ���W�j��(�[���\���]���W)>  +  ���X�j��(�[���\���]���W)> = �F�R�Q�V�W��,                           (4.2.9) 

and the Schrödinger equation (4.2.3), taking (4.2.8) into account, becomes massless 
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In line with the initial condition (4.2.9), we consider a stationary case where an internal “parti-

celle” is moving around the center of the core of the «electron» and where all average characteristics of 

this random process, including �1�S�D�U����and �2�S�D�U, are time-independent. Therefore, the wave function of the 

internal “particelle” can be expressed as follows: 
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in this case, the massless Schrödinger equation (4.2.10) is simplified to 
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(4.2.12)   

where  )( �!�� �U�X�S
�&

is the average time independent potential �H�Q�H�U�J�L�X�P of the internal “particelle”. 

Equations similar to (4.2.12) are well known in quantum mechanics. For convenience, we will 

present its solutions, referring to monographs [13, 37]. 

 

4.3 Internal ñparticelleò in a potential well 

Within the framework of the model considered here, an internal “particelle” with radius           

�U7 ~ 5.8·10–24 cm is confined inside the core of the «electron» with radius �U6 ~1.7·10-13 cm (Figure 

4.2.1). Therefore, the average potential �H�Q�H�U�J�L�X�P of the internal “particelle” can be expressed as a “po-

tential well.” 
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Analyzing equation (4.2.12) by taking (4.3.1) into account, we obtain the following discrete se-

quence of eigenvalues of total mechanical �H�Q�H�U�J�L�X�P of the internal “particelle” [13] 
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where���Q��= 1, 2, 3, ... is the principal quantum number. 

Eigenfunctions for the respective �H�Q�H�U�J�L�X�P levels (4.3.2), i.e. solutions of equation (4.2.12) 

with average potential �H�Q�H�U�J�L�X�P (4.3.1), will be the same as in [13] 
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Graphs of functions (4.3.3) and graphs of their squared moduli are given in Figure 4.3.1 ���Z���E����
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Fig. 4.3.1. �Z) Wave functions for different excited states of the internal “particelle” 
in the core of the «electron», where �O = 2�U6; �E) The squared modulus of the wave 
function, i.e. the probability density of the internal “particelle's” location inside the 
core of the «electron» for its different excited states; c) levels of the internal “parti-
celle's” total mechanical���H�Q�H�U�J�L�X�P in a potential well    
 

 

As follows from the functions illustrated in Figure 4.3.1 �E, the center of the core of the «elec-

tron» is the most probable location of the internal “particelle” for �Q = 1. However, in an excited state,   

for example, when  �Q = 2, the internal “particelle” is most likely located at an definite distance from 

the center of the «electron's» core.  

 

4.4 Internal particelle in elastically strained vacuum environment 

Let's consider the second case, when removing  an internal “particelle”  from the center of the 

"electron’s" core in the surrounding it vacuum there are elastic "tension", which tend to return internal 

“particelle” to the original center (rice. 4.2.1). 

�,�Q���W�K�H���P�D�V�V�O�H�V�V���P�H�W�U�D�S�K�\�V�L�F�V���G�H�Y�H�O�R�S�H�G���K�H�U�H�L�Q�����W�K�H���Q�R�W�L�R�Q���R�I���³�W�H�Q�V�L�R�Q�´���R�I���D���Y�D�F�X�X�P���D�U�H�D���F�R�U��
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�S�R�U�W�D�Q�W���W�R���Q�R�W�H���W�K�D�W���W�K�H���G�L�P�H�Q�V�L�R�Q�D�O�L�W�\���R�I���J�H�R�P�H�W�U�L�]�H�G���³�W�H�Q�V�L�R�Q�´���G�R�H�V���Q�R�W���L�Q�F�O�X�G�H���D���X�Q�L�W���R�I���P�D�V�V�����N�L�O�R��

�J�U�D�P����  

Assume that the elastic vacuum tensions, �ê�é��, increase, on the average, proportionally to the 

“particelle's” distance from the center of the «electron's» core   

                                                       ��
O�ê�é���:�N�&�; 
P
N�G�è�N,                                                  (4.4.1) 

where �N�X is a massless factor of the vacuum's elastic tension.  Then, the “particelle's” average potential 

�H�Q�H�U�J�L�X�P can be approximated as                                    
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Substituting (4.4.2) into (4.2.12), we obtain the 

well-known “quantum harmonic oscillator” equation
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(4.4.3)  

Study of that equation leads to the following 

discrete expansion of eigenvalues of the “particelle's” 

total mechanical �H�Q�H�U�J�L�X�P [13]:  

          �¸
�¹

�·
�¨
�©

�§ ��� 
2
11

�Q
�N�X

�S�D�U�S�Q �K�H ,  (Figure 4.4.1)    (4.4.4) 

 where �Q��= 1, 2, 3, ...  is the principal quantum number. 

Corresponding to each discrete value of total mechani-

cal energium (4.4.4) is a specific eigenfunction [13]:   

                                                          )(
2

exp1)(
2

0

�U�+
�U

�U �Q�Q
�¿
�¾
�½

�¯
�®
�­
��� 

�O
�\ ,                                          (4.4.5)   

             where                        
�Q

�U�Q
�U

�Q

�Q

�Q �U
�H

�H
�Q

�U�+
�w

�w��
� 

�� 2
2

!2

)1()(
�S

                                            (4.4.6)   

 

is a �Qth degree Chebychev-Hermite polynomial, where ��0 is equal to                                                              

                                                          
�X

�S�D�U

�N

�K
�O � 0 .                                                         (4.4.7)  

Now, let's define several eigenfunctions (4.4.5), describing various average behaviors of a ran-

domly wandering “particelle”, whose deviations from the center of the «electron's» core (Figure 4.2.1) 

cause elastic tensions in the surrounding vacuum [13, 37] 

 

 
 

Fig. 4.4.1. Equidistant levels of the total mechani-
cal energy of the �0�S�Q quantum harmonic oscillator 
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Function forms �\ �Q (4.4.9) through (4.4.10) and their squared moduli |�\ �Q|2  are shown on Figure 4.4.2. 

 

 

 

 

 

     

 

 
 

 

Fig. 4.4.2. �D) Wave functions for various average states of the “particelle's” wandering within an 
elastically-deformed vacuum; �E) Probability distribution densities of “particelle” locations in the 

vicinity of the «electron's» core center in the case considered here [13] 
 

It follows from equation (4.4.4), in this particular case, that even in a non-excited state (i.e. 

with �Q��� ��0), the “particelle's” total mechanical �H�Q�H�U�J�L�X�P is not equal to zero: 
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the “particelle” will be permanently wandering around of the center of «electron's» core, and, there-

fore, the probability distribution density of  finding it in that area will be described by a Gaussian func-

tion  
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(Figure 4.4.2 �E, upper plot).                       

 Consequently, the root-mean-square deviation of a “particelle”, which wanders chaotically 

around of the center of «electron's» core, by taking (4.4.7) into account, is equal to:  
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By comparing (4.4.13) with (4.2.4), we discover that the massless factor of vacuum elastic ten-

sion, �N�Q�� is inversely proportional to the average autocorrelation factor of the random process �U�S�D�U,�W ex-

amined here:  

                                                          
�U�S�D�U

�Q�N
,

1
�W

� ,                                                       (4.4.14) 

which corresponds to the eigenfrequency of this “quantum harmonic oscillator” �N�Q��= �I0���� 

 

4.5 Angular quantum characteristics of a wandering ñparticelleò 

While “particelle” moving chaotically around of the center of «electron's» core, it permanently 

changes the direction of its movement (Figures 4.2.1 and 4.2.2). Therefore, from the viewpoint of clas-

sical mechanics, such a “particelle” possesses a certain angular momentum 
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L �N�&
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where �U is the distance between the “particelle” and the the center of «electron's» core (the “parti-

celle's” own radius is neglected here, and �����L�&
L �I �ã�R�&  is the “particelle's” immediate momentum value.  

Let's present vector equation (4.5.1) in component form:                       
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In classical mechanics, the squared modulus of the “particelle's” momentum will be equal to                                                              

                                                              .2222
�]�\�[ �/�/�/�/ �����                                                          (4.5.3)  

Applying a well-known quantum mechanics procedure, let's re-write the operators of the “par-

ticelle's” momentum components (4.5.2) [37]  
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In order to obtain massless operators, let's divide both members of (4.5.4) by �P�S   
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As a result, by taking (4.2.4) into account, we obtain 
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where  �]�\�[ �O�O�O
�š�š�š

,,  are components of the “particelle's” specific relative angular momentum operator, 

since �Y�U
�P
�/

�O
�S

�u� � .   
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In the spherical system of coordinates, massless operators (4.5.6) are expressed as follows  
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The operator corresponding to the square of the modulus of the specific relative angular mo-

mentum, that is, corresponding to expression (4.5.3), is equal to   
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The generalized Schrödinger equation (4.2.12) can be presented in the following form [37] 
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where the Laplace operator, �’ 2, takes the following form in spherical coordinates  
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while the 2
,�M�T�’  operator is defined by equation (4.5.9).    

Substituting (4.5.11) into the massless Schrödinger equation (4.5.10), and assuming   
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we obtain 
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Since the left and the right members (4.5.13) depend on different independent variables when   

considered separately, they should be equal to one and the same constant, �O. Therefore, we have two 

separate equations for the radial function �5(�U) and the spherical function �<(�T���M), [37] 
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The radial function �5(�U) and the eigenvalues of the “particelle's” total mechanical energium, �0�S�Q�� 

are determined by the specific kind of the average potential energium, �!�� )(�U�X�S

�&
. In particular, the ra-
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dial functions (4.3.3) and (4.4.5) were presented above when �!�� )(�U�X�S

�&
given by the expressions 

(4.3.1) or (4.4.2) respectively. 

Solutions of equation (4.5.15) is well-known in quantum physics; they take on the following 

appearance [37]: 
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�[�T  are the associated Legendre functions, 

�������������������������O  and  �P are the orbital and magnetic quantum numbers respectively, and �[ = cos�T.   

Functions (4.5.16) are suitable for describing the average orbital component of the motion of a 

“particelle” that moves chaotically around of the center of «electron's» core, for any average potential 

energium �!�� )(�U�X�S

�&
 distributed symmetrically around the center.   

Given in Table 4.5.1 are several functions �<�O
�P(�T���M) from (4.5.16) together with their corre-

sponding probability densities of the angular distribution of a “particelle’s” location in the vicinity of  

“electron's” core center |�<�O�P(�T���M)|2 [37]. 

                                                                                                                                Table 4.5.1 

 

Types of angular distributions |�<�O
�P(�T���M)|2 for different values of orbital �O and magnetic �P quan-

tum numbers are shown on Figure 4.5.1 

 

 

Quantum 

 numbers 
�<�O

�P(�T���M) |�<�O�P(�T���M)|2 

�O = 0, �P = 0 �<0
0��� ��[1/(4π)]1/2 |�<0

0)|2 = 1/(4π) 

�O = 1, �P = 0 �<1
0��� ��[3/(4π)]1/2cos �� |�<1

0)|2 = [3/(4π)] cos2 �� 

�O = 1, �P = 1 �<1
1��� ��– [3/(8π)]1/2sin �����H�L�M |�<1

1)|2 = [3/(8π)] sin2���� 

�O = 1, �P = – 1 �<1
–1� ��[3/(8π)]1/2sin �����H– �L�M |�<1

–1)|2= [3/(8π)] sin2�� 

�O = 2, �P = 0 �<2
0��� ��[5/(4π)]1/2��[(3/2) cos2����– 1/2] |�<2

0)|2 =��[5/(4π)][(3/2) cos2����– 1/2]2 

�O = 2, �P = 1�� �<2
1��� ��– [15/(8π)]1/2sin ����cos �� �H �L�M |�<2

1)|2 =��[15/(8π)] sin2����cos2�� 

�O = 2, �P = – 1�� �<2
–1� ��[15/(8π)]1/2sin ����cos �� �H– �L�M |�<2

–1)|2 =��[15/(8π)] sin2����cos2����

�O = 2, �P = 2�� �<2
2��� ��[15/(32π)]1/2sin2�����H2�L�M |�<2

2)|2 = [15/(32π)] sin4���� 

�O = 2, �P = – 2�� �<2
–2��� ��[15/(32π)]1/2sin2�����H–2�L�M |�<2

–2)|2 =[15/(32π)] sin4�� 
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Fig. 4.5.1. Probability densities of angular distribution of “particelle’s” location in the vicinity 
of the «electron's» core center |�<�O

�P(�T���M)|2 for different values of orbital, �O, and magnetic, �P, 
quantum numbers 
 

The average behavior of a chaotically wandering “particelle” described by a probability distri-

bution density  

                                  222 |),()(||),,(||),,(| �M�T�M�T�\�\ �P
�O

�Q �<�U�5�U�]�\�[ � �  

leads to the curving of the vacuum  area around such “particelle” with the formation of stable convex-

concave features inside the core of the “electron” (Figure 4.5.2). 

 

 
 
Fig. 4.5.2. Examples of averaged convex-concave features of the vacuum area within the 
«electron's» core connected with various probability distribution densities of the “particelle” 
location 22 |),()(||),,(| �M�T�\ �P

�O
�Q �<�U�5�]�\�[ �  associated with different values of the three quan-

tum numbers �Q�����P and �O. 
 
 
 
 

 

Therefore, without going beyond classical logic, the geometric and quantum mechanics presen-

tations appear to be closely interrelated within a common statistical (quantum) metrаphysics.  
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Such considerations of the averaged discrete (quantum) sets of metric-dynamic “particelle” 

states within the «electron's» core may carry over into considerations of other similar local vacuum 

formations of various scales. Therefore, the logical and mathematical apparatus of statistical (quantum)  

metraphysics proposed here can be applied to the study of the following phenomena, among others:  

the wobbling of a biological «cell’s» inner core, the oscillation of a «planet's» inner core, motions of 

an «embryo» in a womb, behavior of a fly in a jar or a tiger in a cell, a «galaxy» within a «metagal-

axy», etc.  

Let's select as example any set of two nested spherical vacuum formations from the hierarchy 

(2.6.20): 

���������������������������F�R�U�H������– a biological «cell’s» inner core with �U5 ~ 4.9·10–3 сm;  

�������������������������³�S�D�U�W�L�F�H�O�O�H�´������– the core of an «electron» with �U6 ~1.7·10–13сm, 

                                                         or ��

���������������������������F�R�U�H����– the core of a «galaxy» with �U3 ~ 4·1018 сm;  

���������������������������³�S�D�U�W�L�F�H�O�O�H�´����– the core of a «star» or a «planet» with �U4 ~ 1.4·108 сm, 

                                                         or  

�������������������������������F�R�U�H����– a core of a «metagalaxy» with �U2 ~ 1.2·1029 сm;����

�������������������������������D���³�S�D�U�W�L�F�H�O�O�H�´����– a core of a «galaxy» with �U3 ~ 4·1018 сm.  

For each of these mutually mobile “core - particelle” combinations it is possible to derive dis-

crete (quantum) sets of averaged metric-dynamic states similar to the states of a “particelle” within the 

core of an «electron». The difference between them will lie basically in the value of the “particelle's” 

inertial factor, �o�K  (4.2.4), which depends on the scale of the phenomenon under consideration. 

As an example, let's evaluate the inertial factor of the core of the «electron» wandering chaoti-

cally around the core of a “hydrogen atom” (Figure 4.5.3). 

                            ,2 2

�_�U

�_�U
�_ �W

�V
�K � 

                          
(4.5.32) 

where �1�H�U���� �2�H�U��are the��root-mean-square deviation and autocor-

relation radius, respectively, of a random process related to the 

chaotic wandering of the «electron's» core around the 

«atom's» core.  

The following equation is known in modern physics:  

      
� 

�_�P
�! 1.055·10–34 Js / 9.1·10–31kg ≈ 10–4 m2/s,     (4.5.33) 

where �P�_ is the mass of an electron. According to (4.2.4), the 

“electron's” core inertial factor can be assigned the value  

 
 

Fig. 4.5.3. Probability density distribution 
of the location of the «electron's» core cen-
ter inside a hydrogen atom. The maximum 
of this distribution is known to correspond 
to �U��~ 0.5А = 0.5·10 –10 m 
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≈  10–4 m2/s.                                          (4.5.34) 

Assuming that the root-mean-square deviation �1�H�U��of the «electron's» core’s chaotic motion in 

the vicinity of the «hydrogen atom» center is roughly equal to �1�H�U��~10–10 m (Figure 4.5.3), it follows 

from equation (4.5.34) that 

                                              10–4 ≈ 2·10–20/10–4 = 2·10–16 s.                                        (4.5.35) 

It is possible to derive the average velocity of the «electron's» core motion in the case under 

consideration:  <v�H> = �1�H�U��/�2�H�U = 10–10/2·10–16 = 0.5·106 m/s.   

For comparison, let's evaluate the inertial factor of a fly, ���P, moving chaotically inside a 3-liter 

closed glass jar. In that case, the root-mean-square deviation of the fly from the jar's center, ���P, and the 

correlation factor of this random process, �2�P�U, will be roughly equal to:���1�P�U��~ 5 cm = 0.05 m, �2�P�U��~ 1.3 s, 

respectively. Therefore  
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(4.5.36)
 

while the average velocity of its chaotic motion <v�P> ≈ �1�P�U��/�2�P�U ≈ 0.05/1.3 ≈ 0.038 m/s.  

Eigenvalues of the total mechanical energium of a fly confined in a jar (potential well) can be 

defined by equation (4.3.2)  

 
                                                          

, 
8

  2
2

22

�Q
�U�E

�P
�P�Q

�K�S
�H � ����  ������������������������������������������������������������������������������������������������(4.5.37)��

where �U�E��= 0.12 m is the jar's radius, while the eigenfunctions for the total �H�Q�H�U�J�L�X�P levels (4.5.37) are 

expressed by (4.3.3) 
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�7�K�L�V���F�R�Q�F�O�X�V�L�R�Q���L�V���H�[�S�H�U�L�P�H�Q�W�D�O�O�\���Y�H�U�L�I�L�D�E�O�H�����,�I���Z�H���I�L�O�P���D���I�O�\���L�Q���D���M�D�U���D�Q�G���S�O�D�\���W�K�H���I�L�O�P���E�D�F�N���D�W���D��

�K�L�J�K�H�U���V�S�H�H�G���� �Z�H�� �Z�L�O�O���E�H���D�E�O�H���W�R���V�H�H���W�K�H���G�L�V�W�U�L�E�X�W�L�R�Q���R�I���W�K�H���I�O�\�
�V���D�Y�H�U�D�J�H���S�R�V�L�W�L�R�Q�V���L�Q���W�K�H���M�D�U�����7�K�H�Q���W�K�H��

�H�[�S�H�U�L�P�H�Q�W�� �F�D�Q�� �E�H�� �U�H�S�H�D�W�H�G�� �Z�L�W�K�� �G�L�I�I�H�U�H�Q�W���L�Q�S�X�W���F�R�Q�G�L�W�L�R�Q�V���� �V�X�F�K�� �D�V�� �W�H�P�S�H�U�D�W�X�U�H�� �R�U�� �S�U�H�V�V�X�U�H���� �,�Q�� �W�K�D�W��

�F�D�V�H�����X�Q�G�H�U���W�K�H���S�U�H�G�L�F�W�L�R�Q�V���R�I���$�O�V�L�J�Q�D�����G�L�I�I�H�U�H�Q�W���D�Y�H�U�D�J�H���G�L�V�W�U�L�E�X�W�L�R�Q�V���R�I���W�K�H���I�O�\�
�V���O�R�F�D�W�L�R�Q�V���Z�L�O�O���E�H���R�E��

�W�D�L�Q�H�G�����2�I���F�R�X�U�V�H�����V�X�F�K���D�W�U�R�F�L�R�X�V���W�U�H�D�W�P�H�Q�W���R�I���D�Q�L�P�D�O�V�����H�Y�H�Q���I�R�U���U�H�V�H�D�U�F�K���S�X�U�S�R�V�H�V�����L�V���Q�R�W���L�Q���O�L�Q�H���Z�L�W�K��

�W�K�H���P�R�U�D�O���S�U�L�Q�F�L�S�O�H�V���R�I���W�K�H���$�O�J�H�E�U�D���R�I���6�L�J�Q�D�W�X�U�H�V���>�����@����

In our third example, let's consider a biological “cell.” Chaotic movements of its “core” may 

have the following average characteristics: �1�K�U��~ 3.5·10–5 m, �2�K�U��~ 1.2·10–3 s, and, consequently,              

���K��≈ 20.4·10–2 m2/s. In this example, however, the oscillating “core” is linked with the “cell's” cyto-

plasm. Therefore, the “core's” deviation from its initial position in the cytoplasm leads to the buildup 

of elastic tensions pulling it back. Therefore, the eigenvalues of such a biological “cell's” total mechan-

ical �H�Q�H�U�J�L�X�P can be approximately defined by expression (4.4.4)   
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while the eigenfunctions for these �H�Q�H�U�J�L�X�P��levels are described by Expressions (4.4.5) 
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where 
�K

�K

�N
�K

�O� 0 ,  where �N�K is the massless factor of elastic 

tension of a biological “cell's” cytoplasm. 

It is also known that tree boughs move according to 

the Lissajous curves under the influence of wind (Figure 

4.5.4).  

Therefore, the Statistical metraphysics and the Algebra of Signatures argues that the average 

behavior of macro objects is basically similar to that of microworld objects provided that conditions 

are equal. Which means that in certain cases the methods and mathematical tools of quantum physics 

can be applied for describing discrete sequences of average states of macroscopic objects.   

There are five quantum numbers: �I, �Q, �O, �P, �V�� in the Statistical (quantum) metraphysics that 

largely determine the scale and discrete variants of average manifestations (configurations) of each 

stable spherical vacuum formation since all of them are in permanent chaotic motion (Figure 4.5.5). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.5.5. Chaotically wandering “core” of a vacuum formation with 

a “particelle” chaotically wandering inside the core 
 

 

 

 

 
   Fig. 4.5.4. Discrete set of  

   3D Lissajous curves 
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   4.6 çMuonsè, �W��-çleptonsè and �k, �V, �W, �E-çquarksè 

As is known, collisions of elementary particles moving at 

high speeds lead to the birth of pairs of new particles – antiparti-

cles. 

For example, let's  consider the birth of a muon - antimu-

on pair and a �W�� -lepton-�W���±-antilepton, which form upon the colli-

sion of an electron and a positron (Figure 4.6.1): 

��������������  �����������_�� �_�±���o ���P�� �P���±�������������������_�� �_���±���o ���W���� �W���±.            (4.6.1) 

The muon and �W��lepton are different from electrons only 

in terms of mass: 

�����������������������������������������������P�_��= 0.511 MeV,        �P�P = 105.658 MeV,        �P�W = 1.984 GeV,                  (4.6.2) 

while all their other characteristics (charge, spin, lepton number, etc.) remain the same. 

Many researchers considered muons and �W��leptons so��“redundant” in the structure of material 

world that they could not help asking: “Why did nature need these particles?” 

The Statistical metraphysics, developed here, believes that «muons», �W�� ��«leptons», «antimu-

ons» and �W��–- «antileptons» are not new particles, but the same "electrons" and "positrons" with excited 

states of their cores. In other words, in terms the “muon” and �W�� - “lepton” are, respectively, the first   

(�Q = 1) and the second (�Q = 2) excited states of a free «electron», while the «antimuon» and                     

�W���±��«antilepton» are, respectively, the first (�Q��= 1) and the second (�Q = 2) excited states of a free «posi-

tron».  

The same refers to «quarks», introduced in Charter 2, �k�� and �W-«quarks» are the first and the 

second excited states of a �X-«quark», while �V�� and �E-«quarks» are the first and the second excited states 

of a �G-«quark». 

To test the hypothesis presented here, it is proposed to hold a certain volume of electron plasma 

in a magnetic trap and irradiate it with hard radiation. It is possible that at the same time clamped to 

each other the cores of "electrons" can go into the excited state. In this case, the entire volume of irra-

diated electron plasma can acquire other physical properties. 

Another confirmation of the validity of the foundations of the Statistical (quantum) metraphys-

ics presented here can be the production of «leptons» and «quarks» of the fourth, fifth, etc. genera-

tions, since according to (4.3.2) and (4.4.4) levels of energy of the nucleolus of �0�S�Q�� more than three.��
The reason for the higher “inertia” [in massless Statistical metraphysics, the analogue of mass 

(4.6.2)] of «muons» and �W��«leptons» is likely to be related to the complication of the average metric - 

dynamic configuration of the vacuum area both inside and outside of their excited cores. Metric-

dynamic aspects of “inertia” of elementary «particles» will be considered in the following Chapters.   

    
Fig. 4.6.1. Collision of accelerated elec-
tron and positron sometimes leads to the 
birth of muon - antimuon or �W����- lepton –  
�W���±-antilepton pair 

 



 180 

It is interesting to experimentally check whether the «muon» and «antimuon» created by the 

collision of an «electron» and a «positron» (Figure 4.6.1) remain in an “entangled” state. For this pur-

pose it will be necessary to find out if the «muon's» transition into «electron» automatically leads to 

the «antimuon's» transition into a “positron”, or whether nature allows asymmetry in the number of 

simultaneously existing «muons» and «antimuons». 

��

4.7 Conclusions on Chapter 4 

In Charter 2 we introduced metric-dynamic models of 16 types of «quarks» (to be more precise,             

8 «quarks» and 8 «antiquarks»), of which it turned out to be possible to “construct” all kinds of «lep-

tons», «mesons» and «baryons» known in the Standard Model. This Chapter takes into account the 

omnipresent vacuum fluctuations and attempts to study regularities in the chaotic behavior of the cores 

and “particelles” of the abovementioned local vacuum formations.  

Vacuum fluctuations are non-removable in principle. This means that the axiomatic probability 

of quantum physics is as primary as is the determinism of differential geometry, which derives from 

the presumption of continuity of the vacuum.  

The equal coexistence of probabilistic and deterministic principles is forcing Alsigna to devel-

op “Stochastic metraphysics”, which leads to an average description of discrete (quantum) metric 

structures. The reason is that discrete sets of average states of chaotically wandering “particelles” (Fig-

ure 4.2.1) are inevitably manifested in the average metric-dynamic (convex-concave) configurations of 

vacuum areas both inside and outside of the cores (Figures 4.5.2 and 4.5.6).   

Let's outline the basic notions of the Alsigna's “Stochastic (quantum) metraphysics”, which are 

presented in this work: 

1). The notion of mass with the dimension “kilogram” 

cannot be introduced into the completely geometrized physics, 

in principle. Therefore, the notion of mass has to be excluded 

from all metraphysical perceptions. Instead of point particles 

with mass, charge, spin, etc., the Alsigna's metraphysics to 

consider spherical cores of local vacuum formations (Figure 

4.7.1). Introduced in a similar way are such geometrized no-

tions as the core “inertance” ���D�Q�D�O�R�J�X�H�� �R�I�� �D�� �S�R�L�Q�W�� �S�D�U�W�L�F�O�H�
�V��

�L�Q�H�U�W�� �P�D�V�V���� “intensity of a source of radial vacuum flows” 

around the core ���D�Q�D�O�R�J�X�H�� �R�I�� �D�� �S�R�L�Q�W���S�D�U�W�L�F�O�H�
�V�� �F�K�D�U�J�H��, “dis-

placement of vacuum layers” around the core ���D�Q�D�O�R�J�X�H�� �R�I�� �D��

 
Fig. 4.7.1. The core of local vacuum 
formation is an analogue of a point material 
particle in post-Newtonian physics 
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�S�R�L�Q�W�� �S�D�U�W�L�F�O�H�
�V�� �J�U�D�Y�L�W�D�W�L�R�Q�D�O�� �P�D�V�V�����V�H�H�� �&�K�D�S�W�H�U�� ����, the core's “�H�Q�H�U�J�L�X�P” ���D�� �P�D�V�V�O�H�V�V�� �D�Q�D�O�R�J�X�H�� �R�I�� �D��

�S�R�L�Q�W���S�D�U�W�L�F�O�H�
�V���H�Q�H�U�J�\��, “tension” of a vacuum continuum ���D���P�D�V�V�O�H�V�V���D�Q�D�O�R�J�X�H���R�I���H�O�D�V�W�L�F���W�H�Q�V�L�R�Q�V���L�Q���D��

�V�R�O�L�G���P�H�G�L�X�P), “effect” ���D���P�D�V�V�O�H�V�V���D�Q�D�O�R�J�X�H���R�I���I�R�U�F�H��, etc. 

�0�D�V�V�O�H�V�V�Q�H�V�V���R�I���$�O�V�L�J�Q�D�
�V���P�H�W�U�D�S�K�\�V�L�F�V���F�D�X�V�H�V���W�K�H���J�U�H�D�W�H�V�W���R�E�M�H�F�W�L�R�Q�V���I�U�R�P���V�F�L�H�Q�W�L�V�W�V�����H�G�X�F�D�W�H�G��

�L�Q���W�K�H���S�R�V�W���1�H�Z�W�R�Q�L�D�Q���V�F�L�H�Q�W�L�I�L�F���P�H�W�K�R�G�R�O�R�J�\�����+�R�Z�H�Y�H�U�����W�K�R�V�H���U�H�V�H�D�U�F�K�H�U�V���Z�K�R���K�D�Y�H���D�O�U�H�D�G�\���I�D�F�H�G���W�K�H��

�S�U�R�E�O�H�P���R�I���J�H�R�P�H�W�U�L�]�L�Q�J���W�K�H���Q�R�W�L�R�Q���R�I���³�P�D�V�V�´���M�R�L�Q���W�K�H���U�D�Q�N�V���R�I���$�O�V�L�J�Q�D���V�X�S�S�R�U�W�H�U�V��

2). Vacuum length is conventionally considered as a continuous elastic-plastic pseudo-medium. 

The real substantiality of this pseudo-environment is not manifested in any way (i.e., it is not observed 

experimentally). However, the relation to vacuum as a continuous elastic-plastic medium allows: first-

ly, to objectify this "subject" of research; secondly, to apply the methods of differential geometry and 

mechanics of continuous media to the study of vacuum extent. 

3). Within the Algebra of Signatures, the vacuum extent is not one continuous pseudo-space, 

but the result of additive superposition of a set of continuous pseudo-spaces, that is, 4-dimensional 

lengths each with one of the 16 possible signatures, or topologies (see Chapter 1 and 2). The superpo-

sition  of these 4-lengths is such that, on average, the non-curved vacuum has only zero characteristics. 

That is, when additive superposition of these 16 types of non-curved solid pseudo-spaces, they fully 

compensate for the manifestations of each other to the complete "absence" (i. e. zeroing of all diligent 

metric-dynamic characteristics). In the same manner, the fluctuations of the vacuum state are such that 

are, on the average, identical to their compete absence.  Each of these 16 continuous pseudo-spaces can 

be described as a superposition of another 7 sub-spaces with different signatures (topologies), and such 

identification of sub-spaces can be indefinitely continued [7]. Therefore, Alsigna's vacuum state is an 

infinitely overlapping, continuous, all-fluctuating pseudo-space, which is, on the average, “nonexist-

ent.” For that reason, Alsigna's vacuum state is also called the “Void” [19, 22]. 

4). If anything appears out of the Void (i.e. the vacuum state) it should necessarily appear in 

two mutually opposite forms: “particle” (local convexity) – “antiparticle” (local concavity); wave – 

antiwave; motion – antimotion; deformation – antideformation; dimension – antidimension, etc. These 

pairs of “features” and “antifeatures” are absolutely symmetrical in relation to the Void, but they can 

be phase-twisted and/or rotated against one another at different angles. These rotations and phase-

shifts of vacuum features and antifeatures predetermine the existence of worlds and effects acting 

within them. The development of these worlds is a gradual process of increasingly sophisticated en-

tanglement of the features and antifeatures inhabiting them. But no matter how these worlds can be 

intermixed and interrelated, the global averaging of each one of them is identical to the original Void.    

5). If we view a vacuum state as an objective feature (a continuous pseudo-space)  that is locat-

ed outside of the observer, it turns out that the notion of “time” is not attributable to such a state (an 

attribute of the external reality). In that case, “time” is only an “arithmetization” of the feeling of dura-
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tion, which is only an attribute of an external observer. In other words, there is no space and no time   

external to the observer’s reality (these are only mathematical abstractions generated by the observer's 

consciousness); only a continuous pseudo-space and its movements exist. Therefore, Alsigna had to 

change the approach to interpreting the components of the metric tensor. In this situation, nonzero 

components of metric tensor �J�.�� determine the curving of the 3D local area of vacuum state (or any of 

its 3D sub-spaces), while zero components of metric tensor �J00, �J�.0,�� ���J0�� are related to the accelerated 

linear or rotational motions of the same curved local vacuum area. Therefore, in the Alsigna formal-

ism, a vacuum state (as well as all its sub-spaces and sub-sub-spaces) is identified as a continuous 3D 

elastic-plastic pseudo-space, where any curving of its local area inevitably gives rises to accelerated 

linear (laminar) or rotational (turbulent) motion in the same area. Therefore, Alsigna “sees” that in-

travacuum (pseudo-substantial) flows, which are called “intravacuum currents” form in any curved 

area of vacuum (or in any region of one of its sub-spaces). Any curvatures of any local area of a 3D 

vacuum state give rise to intravacuum currents, and, conversely, the formation of an intravacuum cur-

rent inevitably leads to a local curving of the respective 3D sub-space of the vacuum state. Moreover, 

interrelations between the zero and nonzero components of metric tensor �J�L�M��are determined by the Ein-

stein field equations. The four-dimensionality of the Einstein mathematical apparatus (to be more pre-

cise, Riemannian differential geometry) is connected not with the curvature of space-time (�Z�K�L�F�K�����D�F��

�F�R�U�G�L�Q�J���W�R���$�O�V�L�J�Q�D�����G�R�H�V���Q�R�W���H�[�L�V�W���L�Q���H�[�W�H�U�Q�D�O���U�H�D�O�L�W�\���D�V���L�W���L�V���R�Q�O�\���D�Q���D�W�W�U�L�E�X�W�H���R�I���W�K�H���R�E�V�H�U�Y�H�U�
�V���O�R�J�L�F�D�O��

�W�K�L�Q�N�L�Q�J���� but with the simultaneous inclusion of the curvature of the local 3D area of pseudo-

substantial space and its own velocity and acceleration. Let's also note that in Alsigna, intravacuum 

currents are described with the help of quaternions, and the currents (flows) of various intravacuum 

sub-spaces are added together by the rules of Clifford Algebra.    

6). The vacuum state is in the permanent process of extremely sophisticated and multifaceted 

fluctuations, which are present everywhere. These fluctuations are connected with enormously com-

plex overlappings inside vacuum spaces, sub-space and sub-sub spaces of various topologies as well as 

with chaotic vibrations of each of these spaces and sub-spaces. The multifaceted vacuum fluctuations 

may be caused by the Colossal Determined (or Predetermined) Processes related to the Global For-

mation of the Universe. However, these Processes are so ''entangled” on the local level of the vacuum 

state that Alsigna is forced to treat these processes as random ones and apply the methods of probabil-

ity theory and mathematical statistics to their study. The attitude toward the vacuum state as an ex-

tremely complicated fluctuating and overlapping continuous pseudo-space is forcing Alsigna into de-

veloping a statistical (quantum) metraphysics. Stable features and antifeatures “woven” of that multi-

faceted pseudo-space and their stable metric-dynamic configurations are identified through the ex-

tremality of its action and entropy.  
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7). The condition for the existence of the average stable vacuum formations is determined by 

the “Action Extremum Principle”, which is closely related to the “Entropy Extremum Principle” the 

“Principle of the Conservation of the Integrals of the Averaged Motion of Local Vacuum State Re-

gions” and the “Principle of the General Invariance of the Stochastic metraphysics in Respect to Ran-

dom Transformations in Four Coordinates”. From the above principles it follows that the average  

(frozen) geometric “frame” of the stable local vacuum formations must satisfy the Einstein Field Equa-

tions (which are second order differential equations, see Chapter 2), while the averaged behavior of the 

cores of these vacuum formations must satisfy the Dirac Relativistic Equation, which, in the condition 

of low (compared to the speed of light) velocities (i.e. wave propagation velocity through the vacuum 

state) simplifies down to the Schrödinger equation (see Chapter 3).  

Altogether,  the deterministic Einstein vacuum equations and the probabilistic Dirac or Schrö-

dinger equations, derived from the above common Action Extremum Principle, Entropy Extremum 

Principle, Principle of the Conservation of Integrals of the Average Motion of the Vacuum State Local 

Areas and Principle of the General Invariance of Statistical metraphysics with respect to Random 

Transformations in Four Coordinates, form the basis of massless statistical (quantum) metraphysics 

and thus ensure the completeness of the Alsigna's logical apparatus. 

The presumptions of the statistical (quantum) metraphysics, Alsigna, as outlined above, call for 

a radical revision of the standard physics paradigm, which can be justifiable only in case of resolving 

certain problems of modern physics and predicting 

new effects. 

The solution of one such problem is pro-

posed in this work. Within the framework of Sto-

chastic (quantum) metraphysics, «muons» and tau-

«leptons» may be interpreted as the first and the 

second excited states of «electrons» and «positrons» 

respectively;  �k�� and �W-«quarks» are, respectively, the 

first and the second excited states of a �X��«quark», 

while �V�� and �E-«quarks» are the first and the second 

excited states of a �G-«quark». 

Therefore, Alsigna is able to explain metric-dynamic models of all «quarks», «mesons», «bary-

ons» and «bosons», which are included into the Standard Model (see Chapter 2 and Figure 4.7.2), in-

cluding the metric-statistical models of «muons»,  tau-«leptons» as well as �V�� �E�����k�� �W��-«quarks». 

Not considered in this Chapter were only all varieties of "neutrino" ���‡��,�����ä��,�����R�á, metric - dynam-

ical models which are presented in the Chapter 7. 

 
Fig. 4.7.2. Elements of the Standard Model 


