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Abstract: The aim of the article is to obtain a stochastic equation that describes
the averaged state of a chaotically wandering particle, regardless of its size. As a
result of an angkis it was obtained the integral of the averaged action of a
chaotically wandering particle in the coordinate representation. The resulting
integral turned out to be a functional of the wave functdr,y,z,} (92). The
stochastic EulePoisson equationd02) was found by the calculus of variations, the
solutions of which are the extremals of the functional (92). In the static case
Yy(X,y,z) = y(X,y,2, Eq. (102) is reduced to the generalized tindependent
Schrddinger equation (113). A distinctifeature of stochastic equations (102) and
(113) is the fact that they are suitable for describing the dynamics and statics of
averaged states of chaotically wandering particles of any scale (i.e., they are suitable
for describing stochastic objects of thecrocosm and macrocosniVhen solving

this problem, an intermediate result was obtained: a procedure for obtaining the
probability densityfunction of an rth order derivative for an-fold differentiable
stationary random process is defined. This resatt be used in various sections of
stochastighysics.
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1 BACKGROUND AND INTRODUCTION
The idea conceived by Louie de Broglie that material particles could possess wave
properties was of particular importance in the 1920's. In his doctoral thesis,
Recherches sur la théorie des quaf®esearch on the Theory of the Quanta,
1924), Louis de Brglie compared the rectilinear trajectory of the free motion of a
particle with a direct ray of light, and came to the conclusion that they are
described by the same Jacobi equation, arising from the fundamental principle of
"extremum of action”. It turnedut that the trajectory of the free motion of the
particle and the beam of light are extrema for virtually the same functional of the
action. This circumstance prompted Louis de Broglie to suggest that if the wave
described by the equation

w = exdi(m —kr)}, (1)
where wis the angular frequency; is the propagation vectot;is time;r is the
dimensional vector, displays some properties of a particle. The opposite assertion
is quite possible that is a moving material particle can correspond to a plane wave
described by

y = exg{i(Et—pr)/>}, (2)
whereE is the kinetic energy of a moving partice= mv is its momentums is
the Dirac constant (or reduced Planck constant) associated with the Planck
constant by the relation="(2p.

In addition, Louis de Broglie was acquainted with experiments, carried out
by his elder brother Maurice de Broglie, which were associated with the physics
of X-ray radiation, as well as with the pioneering work of Max Planck and Albert
Einstein on the quamm nature of radiation and absorption of light. This allowed
him in 1923 to 1924 to propose that a moving particle can be associated with an

oscillatory perturbatiory having frequency

w= E/>, 3
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and with the wavelength
/'=2p2pl. 4)

This idea was supported by P. Langeaimd A. Einstein, but most of the
physics community reacted to it with skepticism. However, in the period from
1927 to 1930, several groups of experimenters (C. Davisson & L. Germer, and
O. Stern &I. Estermann et al.) showed that the idea of the existefi matter
waves, proposed by de Broglie, could be used to describe the phenomenon of the
diffraction of electrons and atoms in crystals.

In one of his early works of 1925 to 1926, Erwin Schrodinger, critical of the
BoseEinstein statistics formulationywondered: "Why not start with the wave
representation of t he gas particl es, anoc
guantization conditions ‘“a |l a the Debye
central idea: "This implies none other than the need to take skrimto
consideration the proposal of L. de Broglie and A. Einstein concerning the wave
theory of moving particles."

This idea served as one of the reasons that Schrodinger found the equation
[1, 27 through30]

C
W L([tr b ;;DZy o+ uCoy ., ©)

where y (r;t) = y (xy,zt) is the wave function describing the state of an

elementary particld) is the potential energy of the particle, ands the mass of
the particle.

In fact, Erwin Schrédinger wrote the equationdiin "Quantisierungals
Eigenwertproblem Vierte Mitteilung’, Annalender Physik (1926) [1] in the

following form

2

W vy o PIW g
h h
This equation acquired form (5) later.

Dy - (5a)
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Schrédinger equation (5) laid the foundation for the intensive development
of quantum mechanics, together with the great works of Max Planck, Albert
Einstein, Niels Bohr, and Werner Heisendp. However, the arguments presented
by Schrodinger in derivingq. (5) were subsequently recognized by experts as
incorrect, but the equation itself turned out to be correct.

This was not the only such case in science. For example, the fundamental
equaions of electrodynamics were derived by James Clerk Maxwell from
incorrect assumptions about the mechanical properties of the ether.

Over the past ninetfive years since 1926, many researchers have proposed
different ways to derive the Schrodinger equationl&ed on the axioms of
many different interpretations of quantum mechanics fesee@xample seefor
exampleRosenN. (1964 [65]; Nelson, E. (1966) [2]Chen, R.L.W. (1989]38];
Vleck, V.J.H.(19949 [67]; Yung & Jick H. Yee, (1994) [68]; Peice, P. (1996)
[69]; Ogiba, F. (1996) [45];Briggs, J.& Rost, J.M., (2001)36]; Briggs, J.S. &
Rost J.M. (2001) [70]; Hall, M. J. W. & Reginatto, M. (2002) [3]; Grossing, G.
(2002) [42]; Hall, M. J.W& Reginatto, M. (2002) [43]; Bodurov, T. (2005) [35];
Inage, S.(2006) [61]; Briggs, J, Boonchui, S.& Khemmani, S. (2007)37];
Ward D.W.,Volkmer SM. (2008) [55];Ricardo, CS. (2010)[50]; SzepessyA.
(2010)[ 521 ; Si ndel k Xiang¥Yao W.( Bai0un @.) XiapJh@ 1., ;
Li-Xiao, Yi-Heng W., YarWang, QingCai W., Shuang C. (2011%6]; Pranab,

R. S. (2011) [49]; Field, J.H. (2011) [6ZGhiarelli, P. (2012)39]; Schleich W.P.,
Greenberger D.M., Scully M.O. (2014]; SacchettiA. (2014)[51]; Ajaib, M.

A. (2015)[10]; Nanni, L. (2015)44]; Barde, N.P.Kokne, P.M.& Bardapurkar,
P. P. (2015) [34]Wieser, R (2015 [54]; Godart, M. (2016) [41]; OlavolL. S. F.
(2016)[47]; Baixaul, J. G. (2016)63]; Faycal Ben Adda (2018) [57¢havanis,
P-H. (2018) [58];Field, J.H.(2018) [59];Wang, X-S. (2018) [60]; Olavol. S.

F. (2019)[48] and othe.
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A systematic review of varis ways to derive the Schrddinger equation is
given in the book by L. S. F. Olavo [47]. In this book, L. S. F. Olavo came to the
conclusion that all the known conclusions of the Schrodinger equation can be
reduced to either thEeynman path integralsor to the stochastic approach, a
component of which is the thermodynamic approach using the entropy of a
quantum system. Olavo L. S. F. himself proposed to use the ergodic hypothesis,
the central limit theorem and the stochastic Langevin equation to desve th
Schrédinger equation.

But dissatisfaction in understanding the logical foundations of quantum

physics remains to this day. The situation is so complicated that David Mermin

suggested |l eaving “unnecessary disputes” &

Newertheless, in this article it is proposed to make one more attempt to think
first and then to calcul ate, that is,

The probabilistic model of a randomly wandering particle (which has a
volume and a continuous trajectory of motion)ngidered in this article clearly
contradicts almost all modern interpretations of quantum mechanics, but this
probabilistic model also leads to a derivation of gleeeralized timendependent
Schrédinger equation, as indicated below.

The approach propodein this article to the derivation of the time
independent Schrddinger equation is associated with a detailed consideration of a
stationary random process in which a chaotically wandering particle of any scale
(be it an electron, the nucleus of a biolagicell, or the nucleus of a planet)
participates. As a result of this consideration, it is possible to obtain the integral of
the averaged action of the given stochastic system. As a result, the stochastic
EulerPoisson equation (102) was obtained forgkizemal of the averaged action
of a chaotically wandering particle. Moreover, in the case when the averaged
behavior of a chaotically wandering particle does not depend on time, the
stochastic Euler Poisson equation (102) is reduced to the generalimeet

independent Schroédinger equation (113). The main advantage of the oBgmed

“Thi
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(102) and (113) is that they are suitable for describing the averaged state and
behavior of stochastic systems (i.e. chaotically wandering particles) of any scale,

both tre microcosm and the macrocosm.

2 METHODS

In deriving the generalized Schrddinger equation there were applied: the methods
of probability theory, the theory of stochastic processes, the theory of generalized
functions, and calculus of variations. Tfeemalism of quantum mechanics was

also taken into account.

2.1 Probabilistic model of a particle moving along a chaotic trajectory
Consider a particle occupying a small volume compared to that of its surrounding

space (see Figure 1). Conventionally,

Figul The particle (“point”) in chaotic m
coordinate system XYZ, so that its total mechanical enErgyways remains constant

Suppose that this point” constantl

“center” (combined with the origin of

influence of various mutually indepesiat force factors. Examples of such a

y

t

ch
h
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"point” in continuous chaotic motion may be: an atom vibrating in a crystal lattice;
a fly flying in a jar; a nucleus vibrating inside a biological cell; an embryo moving
in the womb; a tip o& branch fluttering in th wind, and so forth.

Suppose that this “point” constantly <c¢h
“center” (combined with the origin of t h
influence of various mutually independent force factors. Examples of such a
"point” in continuous chaotic motion may be: an atom vibrating in a crystal lattice;

a fly flying in a jar; a nucleus vibrating inside a biological cell; an embryo moving
in the womb; a tip o& branch fluttering in the wind, and so forth.

We suppose that such dtig motion of the "point" continues "forever" due

to the fact that its total mechanical eneEgglways remains constant:

{ =T(xy,z) + U (xy,z,) =const (6)
where T(Xx,y,zt) is the kinetic energy of t he “ pc
Uxyzt) is the potenti al energy of the “poin
return it to the “center” of the coordinat

Thus, in this model, each of the energiEsg,y,zt) and U(x,y,zt) of the
"point” is a random function of time and its position relative to the "center". But
these energies flow smoothly into each other so that their sum (i.e., the total
mechanical energl) always remains constant.

I f the speed of the "point" in chaotic
(see Figure 1) is low, then according to #wrefativistic mechanics, it has kinetic

energy

_PA(X Y, Zt) + pa(X Y, Z ) + P2 (X, Y, Z,)
T(Xi y’ Z,t) - 2m . (7)

For brevity, instead of (7) we write

Pz (t) + pa(t) + p2(t)
2m ’

T = (8)
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where p=(t), pAt), pt) are the respective instantaneous values of the spatial
components of the momentum of the "point" in chaotic motions the mass of

the "point".
Wherein B0 = /P20 + P20 + P20, ©)
where p.(t) =my(t) = m& =ma(t). (10)

dt
The type of potential enerdy(x,y,zt) acti ng on the “point?’
The act i on Sarder tohsaerdtign dsidefined in noelativistic

mechanics as follows [12]

S(t) = ﬁT(pX,t) - U (x,t)]dt + Et. (11)

t

To simplify the calculations, let's consider the -glmensional case,
without loss of generality. The threfmensional case merely requires more
integrations.

Due to the complexity of the pathofthep 0i nt " i n moti on, we
not in the action itself (11), but rather its average over time (resp., over its
realizations).

Due to the complexity of the movement
interested not in the action itself (11), but is #verage over realizations or over
time

S=im L4 S0 =AT(p.0- UG+ Et 12

4

Recall that for an ergodic stochastic process, an average over time is
equivalent to the average over its realizations.

Finding themean of the action (12) is carried out over the realizations, taken
for the same time interval

Dt =t —t;.
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The averagekinetic energy of a "point" in chaotic motion may be
represented as

T(DMF%] iy (p,) tgdtg, (13)

where} (px) is the probability density function of the momentum compopgnft
the "points".

The average potential energy of a "point” may be represented as

U(xt) = :’Y (X)U (x)dx, (14)

wherej (7) is the probability density function of the projection onto xkexis of

the “point” wandering in the.vahd2).nity of t

Fig. 2: On average, a sphericaltyy mmet r i c al formati on, i nside whic
constantly randomly wander s. Q is randomly chan
symmetric formation
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Substituting (13) and (14hto theEq. (12) for the mean of the action, we
obtain

o

= ﬁ ﬂ(px)tgfdtq( nr(x)u (x)dedt+ Et. (15)
|

For the further derivation of the Schrédinger equation, two auxiliary items
are given below. The first item, developed by the authothaf article, is
dedicated to the definition of the probability density function of the derivative of
the n-th order of then times differentiable, stochastic stationary process. The
second item, the "coordinate representation of the average momentum of a
particle (i.ce. “poi nt "D)l. BlokkintZew[19}, sinweed f r om
this paragraph is of great importance for the aim set in this work.

3 RESULTS

3.1 Determination of the probability density function of the n-th derivative
of an n-times differentiabl e stationary stochastic process
The key to the understanding of quantum mechanics and the limits of its
application lies in the determination of the probability density function of the
derivative of a stationary stochastic process, given tt@tprobability density
function of the stochastic process itself is already known.

The solution to this problem to justify the quantamechanical procedure
of the transition from the coordinate representation to the momentum
representation, and vice gar, without using the hypothesis of the existence of de
Broglie waves.

This is made possible due to the fact that the momentum of a particle

(materi al point”) is Ilinearly related to

Px= M PX/Ut = mx,
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In addition, the problem of determining the esimmensional probability
density functionj [3°(t)], the derivative of then-th ordern-times differentiable
stationary stochastic proces¢t), when only its onelimensional probability

density functiony [3(t)] is known, arises in a series of problems in the fields of
statistical mechanics and radio physics.

. /
o <)

./A\_//\\_/ \7/
NOU: . [
R \ AL ON ~, /\V/\\\_/a;
AR SR A A I.
f i 1
T=1.—1.
i

Fig. 3: Realizations of the differentiable stationary stochastic prosgpsit is shown that the
variabless(ty) = 3x in the cross sectiofa and the derivative of the stationary random process in the
same cross sectia (t) = 3/ are independent random variables

First, consider the general properties of the first derivative of the stationary
stochastic procest). To do this] e explareits realizations (see Figure 3).

Figure 3 shows that the value of the random variafi¢ in the cross

. . L t .
sectionty is independent from the derivative(t, ) :% of this process taken
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in the same cross sectitn Therefore, the random valuegts) and 3y (i) are

uncorrelated. This may be expressed analytically [16]:
<x(t)xilt) > =< [x( > <[x(t) >=0, (16)

where the brackets > means averaging over the realizations. Here it is taken into
account that the differentiation and averaging operations in this case are
commutative, and that all the averaged characteristics of a stationary (in the

narrow sense) stochastic process, indgdks dispersion, are constant over time:

<[x(t, )} >=const.

Realizations of a stationary stochastic procfs such as that shown in
Figure 3, can be interpreted as the change over time of the projection onto the

Xaxis of the position of the wandering

i.e.x(t) = 3(t).

However, even in the case of the statistiodlependence of the random

P

valuess(tx) = 3x and 3y (t) = 3x/, there exists a connection between the probability
density functiong (3x) and} (3x;). This follows from the procedure of obtaining
the probability density function of a derivatiyési) for a known twedimensional
probability density function of a stationary stochastic proeisgires 3)16, 17]
r()q,xj):r()q,ti;xj,tj). a7
For this, inEx. (17), it is necessary to make a change of variables

t t

t
X =X - =Xi; Xj=Xk+§X|j; t =t -—; tj=tk+§, (18)

where { =t, - t;; t, =——,

with the Jacobian of the transformatiaf} £ U As a result, from the probability

density function (17) we obtain

Dt DX S8 (19)

, a
rix.,xi)=Imt¢ra - —xj,t - —x +—xj, t +
(kl!)t_o gkzdkzkzdkz
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Further, integrating the obtained expression oster find the desired
probability density function of the derivative of the original process in the cross
sectiontk [16,17]:

r(xi) = [y (X )dx,. (20)

The formal procedure given by (17) through (20) solves the problem of
determining the probability density functiqiisy) for a known twedimensional
probability density function (17). However, a tomensional probability density
function is defined only for a very limited class of stochastic processes. It is
therefore necessary to consider the possibility of obtaining a probability density
function } (3y) for a knownonedimensional probability density functigrs).

To solve this problem, use the following properties of stochastic processes:

1] A two-dimensional probability density function of any stochastic process
can be represented as [16, 17]

rlx bt )= riet)rix t 1x.t), (21)

i il j P4
where J (35, t /3, t) is conditional probability density function.
2] For the strictly stationary stochastic process, the following identity holds
[16, 17]
r(xi,ti):r(xj,tj). (22)
3] The conditional probability density functigigs;, t/ i3t) of a stationary
stochastic process fsends td; degenerates into a delta function [17]

Itimor()(j,tj /xi,ti):d(xj - x). (23)

Based on the above properties, consider a stochastic process owatehal
[ti= ti W2; tj= tk+U2] (see Figures 3xsUtends to zero, using the following
formal procedure. The probability density functigris) = (3r,t) andy (3) =4 (3,

tj)) can always be represented as the product ofunations:
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(24)
rix)=j (Xj)/ (XJ)Z/ Z(Xj)’
where ((3r) represents thevave functionof a random variabler in the cross
sedion t;. (see Figures 3)[i(3;) represents the&ave functionof a random variable
3in the cross sectiof.
For a strictly stationary stochastic process, we have the identity

Jj (6)=/x), (25)
as is easily seen by taking the square root of both sides of the identity (22). Then,
according to (24), we obtain (25). Note that identity (25) is approximately true for
the majority of norstationary stoché#is processes ddtends to zero, that is,

J ) =im bt =t +e). (26)

When the condition (25) holdEg. (21) can be represented in the symmetric

form
riox ) =7 0a)rb 1x)7 )., (27)
wherey (31 / ipis the conditional probability density function.

In expanded form (27) becomes

g)(”tl—t X t _t +2H
/ot = gt =gt st S o =

In (28), letUtend to zero, but in such a way that the intefilialuniformly

(28)

shrinks at the timéx = (i 7 t)/2, then, taking into account (23), from (27) we

obtain

im 7 (x,x) =Im7 (07 (6 107 (0)F =7 (6)dlx - 6 (%), (29)
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where3sx is the result of the stochastic valgig) tending to the stochastic value
3(tk) on the left, whilegx is the result of the stochastic vale@) tending to the
stochastic value(tx) on the right.

Integrating both sides of thex. (29) overax and3x, we obtain
N A Ga)alx - X () dxdx;, =1. (30)

Ex. (30) is a formal mathematical identity out of the theory of generalized
functions, taking into account the properties of the eeltation (orut-function).
In order to assign thEx. (30) a physical meaning, it is necessaryspecify the
specific type of thé&-function.

Therefore now determine the form ofidunction for a Markov stochastic
process. Consider a continuous stochastic Markov process which satisfies the
Einstein- Fokker- Planck equatiofil7, 18]

X, | x 2rix /x
WX /X) _ g H (12 .)’ 31)
Mt KX
whereB is the diffusion coefficient. This parabolic differential equation has three

solutions, one of which can be represente[dl ds18]
_ 1 2
rlx .t /xi,ti)-g pexplialy, - x)- o?B(t, - t)kdg,  (32)

whereq is the generalized parameter.ipsti = Utendstozero{—~ 0) , t hen fr om

(32) we obtain one of the definitions ofidunction
, 1°, .
Im r(x;1x)= » pexp{ia(xy - X, )kda=d(x; - x). (33)

Since this result was obtained for the limiting caseUdsnds to zero
U~ 0), it i s n aduncior B3) vad eodrespordandt onty hoea
Markov stochastic process, but also to many other stationary stochastic processes.
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Substituting thak-function (33) into (30) yields

o

~ e1 %, 2.
N ¥ ) % rexpfia (x;, - Xik)}dql;l/ (X )dx, dx;, =1 (34)
-0 -n e -a u

Changing the order of integration in (34), we obtain
e 1 7. : 1 °. _ g
ng—zpn/ (X ) exp{- igx, dx, sz” (X ) expliq.x;, ) dx;, l;Juiq =1L (35
According to (25), for a stationary stochastic process the condition
Gi(3w) = (i(3x) is satisfied, and also from the properties of ianction atU= 0

follows thataw = 3k = 3x. ThereforeEx. (35) takes the form

ol

fj (@) “(q)dg=1, (36)
where j(a)= %zp i (i) exp{- iaxdx, 37)
j(a)= %Zp i (x) expfiaxdx,. (38)

The integrand/ (q)/ (q) in Ex. (36) satisfies all the requirements of the
probability density functiop(q) of the random variable:

r(@)=/ @@=} @ . (39)
Now investigate the random varialie First let's reconsider the solution
Ex. (32). The result of the integration on the right side of this expression does not
depend on the variablg, therefore it may be considered as a generalized
frequency. However, both the physical statement of toblem as well as the
mathematical formalism in thex. (32) impose omg the following restrictions:

1) Thevariableqg must be stochastic.
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2) The random variableg must characterize a stochastic process in the
interval under investigatiortiE t«i UZ; ti= tv+ 2{)(5ee Figure 3) aStends to
zero;

3) The random variablg, according to the mathematical notation on the right
side of (32), must belong to the set of real numbgir&), having the cardinality
of the continuum; that is, it must have the possibilitytake any value in the
range o, . o]

All these requirements are satisfied by any of the following random

variables associated with a stochastic process in the studied time itterval

2 n
)(II:&’ X|||:&: o s X(n):ﬁ

b Mt | bt

But these random variables do not equally characterize the process.

(40)

Consider one of the realizations of the test process. The furst)ofsee Figure

3) in the intervalt =t; - t; (for U< Wor , whereWor is the correlation time of a

stochastic process) may be expanded as a Maclaurin series:

- (ﬂ)
xlt, )= x(t) + xict,)t +@[2+"'+XT|@)I”+--- (41)
Rewrite theEx. (41) in the form
X - X (n) ¢ n-1
I P S S (42)
t 2 nl

wherex(t)=x, x{t,;)=x, .

As in (33), letf tend to zero, whereby (42) reduces to the identity

X - X, .
im L1 =xj, wherex, =x(t )(see Figure 3). (43)

In this way, the only randomariable satisfying all the aboweentioned
requirements in the interval under investigatipm fxi U2; tj = tx+ 2] asUtends
to zero is the first derivative of the original stochastic prockss the cross
sectiontx . Therefore we may assume that the random varighle Ex.s (32)

through (39) is directly proportional &, that is
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_ X
T (44)

where 14 is the proportionalitgimensionatoefficient.

An_additional argumenteach exponentfor example, from integral (37),

corresponds to a harmonic function with frequency q
exp{-igx(t)} - X (t) = ¢sin(qt), (44a)
this is one of the harmonic components of

each frequency g corresponds to the tangent of the angle of inclination of the

tangent line to the harmonic function with a given frequesegKigure 3a and
Figure 3), that is,q 7 ().Urdeed, differentiating the harmonic function

(44a), we obtairan unambiguous relatiow;j(t) = gAcos@t) , from which follows

q:ﬁm#‘jzilj (448)
t- 0 Acos@t) A’
For A = d, expressions (44) and (44b) <coli
: £
_fj ) I - —\(ZJ /. "
- 10 -5 7/ ) s 10

15 ~‘
ost R
1 I
ot 1 \ 1 f ! |
\ f
— o5k J { B
_1 H {
10 - o 5 10
1 "l.l = >
| \ f ‘ {1 |
0.5 |J | I | I‘ |I J I [ -
1
‘ [ 1 \ f | | Vo I A |
oF |‘ | | | l‘ | \ ‘I | | ‘| |I | | _I‘
1 J \ | \ | | | !
L | | J 1 | 1 | 1 J
-0 ". -I. \ I‘ I. ) \ I I‘l —\a \) \ I‘ | | “ I‘ r‘
\/ \/ \ \ / YHARY \ J 1Y, \/ .
BT -5 [ o 5 10

Fig. 3a The higher the frequency of the harmonic function, the greater the angle
o between the tangent to this function andtthagis
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Substituting (44) intdx.s(36) through (39), obtain the following procedure
as required for determining the probability density function of the derivptaye
of a stationary stochastic (not only Markov) procg$sin the cross sectiot,
for a gven the onalimensional probability density functign(sx) in the same
Cross sectiof.

1] Express the given orsimensional probability density functign(3) as

the product of two wave functiorigs):
) =7 () (x). (45)

2] Two Fourier transforms are then carried out:

o

J (xi) = A () explixix/Atdx, (46)

- §-

J *(xi) =—— ﬁ (X)) exp{-ixix/htdx. 47)

5

3] Finally, for any given the cross sectibof a stationary stochastic (not
only Markov) process get the desired derivative of the probability density

function:

rixi) =/ iy " (i) =) (). (48)
As we have already remarked, the procedure give@B)through(48) can
be applied not only to the stationary Markov processes, but to many other
stationary stochastic processes for whicht#fignction in(30) takes the forn{33).
To clarify the physicameaning of the proportionality coefficientdl/we
use a comparison with known results. This method is not mathematically perfect,

but allows us to quite efficiently obtain a reliable result of practical importance.
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Consider a stationary Gaussian stothaprocesss(t). Wherein, in each
cross section of this process, the random variabkedistributed according to the
Gaussian distribution:

r(x)= \/Zpliﬁexp{- (x- aX)ZIZSf}’ (49)

wheres,? and@ are the variance and expected value of the given preftgss
Subjecting the probability density function (49) to the sequence of
operations (45) through (48), we obtain the probability density function of the

derivative of the stochastic process unctarsideration:

__r epr Xt
/o u-
/2p|/7/25-x|2 i 2/7/2$X29

On the other hand, using the wkilown procedure (17) through (20) for a

r(xi)= (50)

similar case, we obtain [16, 17]
1

V20 §

where Us & Us/ Qor, anonr is the correlation time of the stochastic proc¥gs

Comparingex.s (50) and (51), we find that for

r(xi) = exp{- Xxi’12s 5.} (51)

252
=X

(52)

Z.COI'

these probability density functions are completely the same.

Ex. (52) was obtained for a Gaussian stochastic process{ibist the
standard deviation and correlation tirtl: are the main characterisgiof any
stationary random process. All other initial and central moments in the case of a
nonGaussian distribution of the random variabdé) will give a small
(insignificant) contribution toEx. (52); therefore, it can be stated with a high
degree of ertainty thatEx. (52) is applicable to a wide class of stationary

stochastic processes.
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It should be noted that in statistical physics and quantum mechanics, the
transition from the coordinate representation of a function of an elementary
particle stated its momentum representation is effected by a formal process
almost completely analogous to the procedure (45) through (48). The difference is
only in determining the proportionality coefficient1/

In quantum mechanics it is well known that if the pcaEn onto thex-axis
of the position of a free elementary particle (for example, an electron) is described
by a Gaussian distribution [13]

) 1 & X0
(=l () =———=em- o0, (53)

where Uy is the standard deviation of therojections of the positions of an
elementary particle onto th&-axis in the neighborhood of the mean (that is, the
“center” of the system). Then, as the
through (48), it turns out that th@obability dengly function of the momentum
componentg: of an elementary particle is also Gaus$is]

expf— P

f
r(p) = (p) =——— " (54)
SRR T

with the standard deviation

Sy T (55)

where> = 1.0553 10734 J/Hz is the reduced Planck constant (or Dirac constant),
which is related to the Planck constdf 6.626 070 13 10 2 3/Hz by the rab
>="(2p.

If now take into accounthat the momentum component of an elementary

particle (e.g. an electropy is equal to

Py =Me o = Mexi, (56)

res.
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whereme is the electron rest mass, then taking into account (55prtteability
density function54) becomes

exp‘.é - xi l;
Joolimas ) F i d>(m2s )y

Comparing (50) to (57), while taking into consideration (52) andathat

r(xi) =

(57)

andUs = U, find that for the given case

2
>
p=2x= > (58)
Z.ex rne
2 3 3 - 30
Where [ex = ZnLSX = 2% 091 1934 3 Sf =1.733 10433 (59)
> 1.055% 10

is the correlation time of a stationary stochastic process, which is the result of the
projection of the stochastic motion of the "point" (e.g., an electron) ontedhis
near the stationary "center" of the system (see Figures 1 and 2).

From Ex. (58) it follows that the reduced Planck constant is not a
fundamental physical constant, but a quantity expressed through the main
averaged parameters of a stationary stochastic process

2s:m
>= —~ (60)

px
where for a general case:
ﬁpx is the standard deviation of the projection of a randomly moving particle
(“pointxa)xiocsn itnhet he vicinity of the averag
system);
Qx is the correlation time of a given stationary stochastic process;
m is the mass of the particle ("points").

For a wide range of applications, tB&. (60) is in itself very important, as
is the related ratio (52), which in the general case may conveniently be

represented as follows:
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25 2
_Opx_ = with a dimension of (i3s). (61)

pX
[ M

h

Note the following interim caclusions:

1] The quantummechanical transition from the coordinate representation to
the momentum representation is not only applicable to the processes in the world
of elementary particles, but also to any stationary Markov stochastic processes
(and prolably many other stochastic processes), both in the microcosm and in the
macrocosm. For example, a tree branch, constantly moving chaotically around its
middle position (the point of reference serving as the “"center") by the rapidly
changing direction of wid gusts, behaves similarly to elementary particles in the
"potential well". The fluctuations of these movements of the branch would also
have a discrete (quantum) average set of states, depending on the intensity of the
wind gusts. With weak wind gustée branch generally fluctuates near the central
reference point, in a way that the position of its tip can be described by a Gaussian
distribution. With more intense gusts of wind, the tip of the branch rotates on
average in a circle; with even greatertgusf wind, its tip basically describes the
figure eight, etc. Depending on the strength of the wind, the tip of a branch can on
average describe a discrete set of Lissajous figures. In other words, the guantum
mechanical formalism is not an exclusive teatof the microcosm; it is also
applicable to the statistical description of many stochastic processes of the
macrocosm.

2] The algorithm (45) through (48) of the transition from the coordinate
representation (i.e., probability density functiopfs) to the momentum
representation (i.e., probability density functign)msy) and vice versa was
obtained with the concrete form of thdunction (33). It would be interesting to
analyze what would be the result in the case of other typgefuottion.

3] On the basis of the foregoing, we can obtain grebability density
function} (3") of the second derivative of a stochastic procgg3. In this case,
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we should consider not the stochastic procégsitself, but its first derivative
xi(t) = px(t)/it. Then the distribution of the second derivative can be determined
by the same procedure, only then instead @f) in (45) through (48) it is
necessary to substitutésy).

Analogously, we also may obtain theobability density function (3™) of
any derivative oh-times differentiable stationary stochastic process with the help

of the following recursive procedure:

0y =4 (o)) (x9), (62)
A 1 % E ixWxrOg
-a pn
o 1 % . ixMWx™vp
-a pn
25X2(n_1)
where h,, = ; : (65)
corx(™D

Wheresf(n_l), t _ .yare the variance and the correlation time, respectively, of the

corx

givenn —1 times differentiable stationary stochastic process.

4] The procedure (45) through (48% completely analogous to the
guantummechanical transition from the coordinate representation of a quantum
system to its momentum representation, obtained here on the basis of a study of
realizations of an ordinary stochastic stationary process, tleowtiinvolving the
phenomenological principles of wayarticle duality.

There is also no need to use the de Broglie hypothesis about the existence of
matter waves to describe the diffraction of atoms and electrons on the crystal

lattice. We refer t¢72, arXiv:2007.1352F, where, based on the laws of geometric



https://arxiv.org/abs/2007.13527
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optics and the principles of statistical physics, a formuks obtained for

calculating the volumetric scattering diagrams of particles on a nyeltilerystal

surface:
a ala2 1 h2 0 3 2 L 12 5 0
a‘+b Q a a‘+b Q 9
. Zcos?pnl-cos(onl)cosae e Izlhg cosgm, + 4 Izlhg-lq
o)=Lz RN N &
o 2 A [a21R2 0 a 2,12 0O J
B AR G 7 +\/ad+zb s
c ¢ /2= C ke ¢/ 2 + £

., |d (aj bj - aj,bj)+cj (bay, - abj)

| d2\a? +b?

(66)

whered, g, ¥, 3 isanglesare shownn Figure 4b;

a=Ccos cosr +co$ co®;, b=cossimr +cos sing; d=sim+ sirn ;

ayj=—-simcosy; by/=-sim3siny; cv=COS,; A/ =—COoB SinY;

b,/ = cos cosy,

h= |12(p2nlz - 6)
6p2rCOI’

herel, =11y is the depth of thenultilayer surface of the crystal is effectively
involved in the scattering (reflection) of microparticlesis the thickness of one
layer, i.e. one sinusoidal equipotential surface;is the number of layers
effectively involved in the scattering ofié microparticles; reor is the average

radius of curvature of a sinusoidal equipotential surface.

a) b)

Fig. 4. a) Diagram of scattering of particles (electrons) on 64 layers of sinusoide
equipdential crystal surfaces, calculated according to formula (66) using MathCa
software[72]; b) Diffraction of microparticles on a crystal:-dcrystal, 2— microparticle
generator, 3- microparticledetector
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For a single crystal, all the sinusoidal equipotential surfaces have the same,
that is,rcor. Therefore in this caseor signifies the effective cross samt of the
scattering of electrons by the atoms of a crystal.

The results of a calculation using (66) at an angle of incidence of particles
on the surface of the crystal using the values 45, azimuth angleg= (° (see

Figure 4b), 1= 10 cm, reor= 6-10%cm, m = 64 (layers) are shown in Figure 4a.

3.2 The coordinate representation of the average particle momentum
The contents of this paragraph are well known to specialists in the field of
guantum mechanics. However, given the importancsubsequent conclusions,
the following calculations are almost completely rewritten from [19].
Let’' s first recal |l the properties of

theory of Fourier integrals and the theory of generalized functions [19]

~1°  sinkz b 80,if a,b>0 or a,b<0,
im =5y (z dz= 5y (2)d(2)dz=j 67
M7 @A 00 a<o, b>0,  ©7
whereby jm =" kZ:a’(z) (68)
k- np Z

this is one of many forms oftafunction.

Now consider the case of one dimension to reduce calculations and prove

the equality [19]

_n +: . + o . + o é ) 6n
P2 = Y (PIPidP, = i (PP (PR = i (02 > 8y (dx (69
wheren is a positive integerp_Q is averaging over time (or over
implementations) of the momentum component raised to the power

te" = (M) = (mx)", 70
wherey (x) and y (p,) are the wave functions (probability amplitude densities)

which were introduced in (24))/[(X) =/ (x)] and (48) [y (p,) =/ (p,)=/ (mxi)],
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and, according t¢46) and (47), are related (provided the stationary stochastic
process) by the Fourier transforms:

iXD(

Px

i 71
y( ) ﬁ/("‘) (Zp)l/Z ﬁ/ ("') (2@)1/2 ( )
x - 72
y *(p, =)= ﬁ’(") (zp)l,z ?/(") )1,2 (72)
where the parametépar is defined by (61)
25 _ >
Apar = foo = (73)

In order to prove statement (69), folta) andy *(t&) substitute their

respectiveEx.sin terms of integrals (71) and (72) [19]
+u é+u pX)(‘ px ﬂ

Px dx, Sip,.
rgry (X') (2p>)1/2 )g pX ﬁ/ (X ) (2p>)1/2 X]E px (74)

A direct check makes it easy to verify that

i PxX j pij

N
Q
n H
pe > %D—Qe >

' (75)
Substituting (75) into (74)ve obtain
Py ——+n&|;j/ *(x)e pX>Id>g+|;j/(x %igne px>degolp. (76)
o IR OO, ge ~ oxitn

Let's perform an integration by panstimes, starting from the second

integral in the integrand. In doing so, assume t{&} and its derivatives vanish
at the integration boundaries, that isxat +

+ o0, Foll owing these ac
T T T S L ST o

n—-_— =xé e >d > &i>—0 xded 77

Py m-?gf’/(‘) foe & uxJQ Y (%) p. (77)

U
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Changing the order of integration, first integrate qugt9]

+o o Pe(X- %)

1 +a
px T A ( )d |>—Qy(X )dX N g dpx 78
o | ¥ (x)dx @ . O (78)

j = -o

Introduce the variables= ta/h, z = X% T X. In the last integral in (78), we

perform the integration over between the limit§ k to + k; then passing to the

limtk - o, this expression takes the form

— k
r&»—oy(x)uﬂxoim ¥ ()T e
Y- pz

(79)
_ 78 g
= fee |>—oy(x)§dxﬁ/(x+ z)d(z)dz
& W= g o
Based on the properties of tbérichlet integral (67), whem=—0 ;b= + o

andy (2) =y (x+2), we have [19]
_ + Po N Q + o ° N
P = e > 8y (0 (9ax= iy (0 > B8y e, (80)
-u@ HX+ g o Q IJX+
thus,Ex. (69) is proved [19].
Similarly, it can be shown that for slow changes in the wave function, i.e.

for y(x,t)  y#Xt+At), the following expressions are true for each instant of

timet
I = Y (% t)ae i>H3 y(x t)dx, (81)
o C  MX+
. + o N
and i) = f (% A |>:(o V(% t)dx, (813
a C

where y (xt) =/ (xexdiut}, ¥ (xt)=/ (xt)exp- iut},

hereu is an arbitrary real number.
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It can also be shown that threth power of the averaged insignificant
change with time in the total mechanical ene@ of a chaotically wandering

particle can be expressed through the wave fungtigp) yxt+At)

+ o o N
dE" = ¥ (x H)& i>&8 y (x,t)dx. (82)
-a C -

Let’ s divide both sides ofmadtpkeessi on
into account (73), as a result, we obtain a similar statement of stochastic quantum
mechanics for the average velocity of a chaotically wandering particle

Vi(t) = +|?;/(x,t)§e in, ng V(X t)dx. (83)
a0 e X

The generalization to three dimensions then increases the number of
integraionsin Ex.s (80)through(83).

3.3 Derivation of thestochastic EulerPoi ssonds equati on

Let's return to the average action of gfaeticle ("point") in chaotic motion (15)

ol

= 1 (2GR - (90 (90014 Ex
| y

First, let's answer the questionHow can the average potential energy of a
chaotically wandering particle change in time, if the considered stochastic model
of its behavior is based oBx. (6)? To answer this question, we average the
EX. (6)

E=T(xt) +U(x,t) =const (84)
In this case, it becomes obvious that the averaged potential energy of the
considered stochastic system can change if the kinetic energy of this system also
changes in inverse proportion to it. For exampleyifxt) increases, therr(x,t)

should decrease in such a way tB=t(84) remains in force.
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Therefore, the averaged action (15) can be represented as

o

5= imnf(px,t)tgfdtg ﬂ(xt)U(xt)dxudHEt (85)

Z:Jl -

1

Now let's represent action (85) in coordinate form. To do gagorm the
following operations:
1] Writing the probability density functiop(=) as a product of two wave
functions:
r(xt) =y (xt)y (xt). (86)
2] Let's use the coordimatrepresentation of the averaggpulse raised to

then-th power (80). Wherein, in particular, fo= 2, we have

+ o + o

° 2
P20 = i (Pt pEdp, = ﬁ(x,t)ge i>l—i§y(x,t)dx (87)

3] Using (&), we represent the averagénetic energy of theparticle
(“ p o) (13} iri the form

T00) = (60 == Ff (o) € =~ i (x) ”yuif’t) d«  (88)

4] By taking (85) into consideration, now represent the average potential

energy of thearticle("point") (14) in the form:

U(xt) = nf;’y (X, U (x,t)y (x,t)dx (89)

5] In the case when the total mechanical energy of a chaotically wandering

particle changes insignificantly with timege can write

E(t) = E(to) ° dE(to+ 4.

Let'saverage this expression
[®=1()° d +D),

where d{ (t, +Dt) is the average insignificant change in the total mechanical

energy of a chaotically wandering particle over a short time intétval
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Let'srepresent this equation, taking into account (82), in the coordinate form

(0= fr DTy (DX oy o X ax=a (00

-a

6] Substituting Ex.$88), (89) and (90) into integral (85), we obtain a record
of the average action of a chaotically wandering particle in the coordinate
representation for the case when its total mechanical energy changes
insignificantly with time

t, 2 o

§:ﬁ W(xt)“yw(( D - :*ll/(xt)U(xt)y(xt)dx+ ﬁ/(xt)[y(xt)dxjt°

2m

o ~>y(xt)“yl§I WO 4 g

-o

Changing the order of integration, we obtain
S=fR v x ) B Gy (1) 4+ By (x,1)2 © iy (x 1) LD (X g ghec
I’@n 12

(91)
From the Ex. (91jollows the final form of the timelependent average

action for achaotically wandering particle
r%y(xt)uy( Y 4y ()E- U(x1)]° i>y(xt)““ )83' dt (92)

The condition for the extremality of the average action (i.e., the functional)

(92) requires that its first variation vanish [20

’[zuo

B = diy r%y(xt)“y(xoﬂ/(xt)[E U(xt)]° |>y(xt)“y$t)gjxdt 0.

(93)
Let ' s f i nldffanttienal @R)ti.e. eheunctioy (x,t) for which

the averagaction (92) takes an extreme value.
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First, recall that an extrerhaf a functional of the form

HZHZ Wz pza
S= 1,z — xdt, r o 2=y (Xt 94
rﬁ% Xt e 2 utw<8JI ARy (. 9

defined by the Euler Poisson equatior2, p.314

U B ) o 09

X
where L:is the derivative of the Lagrangiarwith respect t@ =y (x,t);  (96)
Ly is the derivative of the with respect top = H_W (X t)
MX MX
Ly is the derivative of the with respect tog :ﬁ - L(EX’ ) :
2 2
L: is the derivative of the with respect tar = H f = “yw((;(’ ) :
2 2
L: is the derivative of the with respect ta = H ZZ = “ym(;(’t) :
2 2
Lsis the derivative of the with respect tos = Hz_ Wy (x.1) ,
MpX X
wherein
£{LD} = LPX + LPZE + LppE + Lpg & (97)

pX HX HX
is the total partial derivative with respectto

ﬁ{L} Ly + L HZ+L Mp+L 2]
Mt “ Pt °
is the total partial derivative with respecttto
2 2
H {Lr}:_p' I_r+|_ £+L £+|_ &

2 2

HX uxz rz UXZ p uXz rg LIX
is the full second partial derivative with respeck%;o

5 M M9
F{L } utLt Ltz Ltp L[g F
is the full second partial derivative W|th resptzﬂ:x:t2

X

2

IJ{S} IJLSH_ IJZ+|_ Hp+|_ Mg
ity T T QT (T T (1
is the total mixed partial derivative with respect smdx.
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To determine the terms included in the Euld?oisson equation (95), we

use the integranlom the timedependent averagetion (92)

¥ (%) ”yw((;"t) +y (WOAE- UM ° sy (x ) L(EX Y (es)
As a result of substituting the Lagrangian (98) iktas (96) and (97), we

obtain (99)

_ > uy(xt) W), Wy
L= o +27 (X D[E- Ux)] +i>E2 r = {L}=0
ﬁ - O’ “2 L= 0,
)= i
ﬁ{ }202|>HJ/(XI) W { 1= 2> lU/(Xt)
pt pt 2m

Substitutingex.s (99) into the Euler Poisson equation (95), we obtain the

desired equation for determining the extrémg,t) of the averagaction(i.e., the
functional)(92)

2 2
> ) Y (XY L ore u kot (x.4). (100)
L 2m X
Generalization to three dimensions reduces to an increase in the number of
integrations, and instead Bfy. (100), we obtain
o il (X Y,20) -3 8y (xy,20) | 1y (6 y.20) 1y (X %208

] ut2[E-U(xy 2y (xy,z1)
it 2mi W’ 'y

(101)
or incompact form

S (Y _
pt

o Dy(r t)+ JE- U(r t)]y(r t), (102)

wherer is the radius vector with the beginning in the "center" of the investigated
object (2= x*+ y?>+ 7% (see Figure 1);

2

- H H Mo
+— is the Laplace operator.

Tpd W e




34 M. S.BatanovGaukhman

Ex. (102) will be called theme-dependent stochastic EuleiPoisson

equation.
Taking into accounkx. (6), Eg.(102) can be represented as

° i>”y$’t) = fr:]E)ﬁ/(F,t)+ 2<T(rC,t) >y(rc,t), (103)

where<T(r"t) > is the average kinetic energy of a chaotically wandering particle

at a point with coordinates y, z In this case, the given average kinetic energy of
the particle can change at this point with time

It is interesting to note that if equation (5agriginally written by
Schrddinger in [1], is represented as

°2i>‘:l—Jt/:Dy- Ny,

then it becomes clear that initially there was a sfgrin front of the left side of
this equation, as in (103), and before the energy V there was a coefficient 2.

The timedependentstochastic EulePoisson's equation (102) allows
finding the extremaly(x,y,z,J of the functional of theaveraged action of a
chaotically wandering particle (92). The square of the modulus of a given
extremaly (x,y,z,)F is a of the probability density function to find a particle at a
point with coordinateg, y, z at timet.

In other words, thetochastt EulerPoisson equation (102) plays exactly the
same role in the considered stochastic process (see Figures 1 and 2), which the

time-dependent Schrédinger equation (5) performs in quantum mechanics.

3.4 Derivation of the generalized timeindependentSchrddinger equation
The stochastic equation (102) derived in this work is intended to describe the
dynamics of the averaged state of a thaleeensional random process in which a

chaotically wandering particle participates. It is obvious that this equation is
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somewhat different from the usual form of the tidependent Schrodinger
equation (5)

O 2
WY - > pa Chruny o). (104)
pt 2m

However, in the stationary case, when the wave function, its total

i>

mechanical energy and potential energy do not depend on time [i.e. when
Y(Y,zt) =y(RY,d, E(t) =Eun U(x,y,zt)=U(X,Y,2)], stochastic equatiofl102)
takes the form
2
22 oy (I3 + Uy (T =Ey (). (106)

This equation is reduced to the form of the tim#gependent Schrédinger
equation.

Eq. (104) can be obtained from the condition of extremality of the time
independent average actiome(, functional)

o o

5= g>_my 24 EX) +y (E- U(x)]gjx, (105a)

which is obtained from timelependent functional (92) under the condition of
stationarity. Indeed, having performed actions similar to (93)100) using the
integrand from(104a), we obtain for the thredimensional case equation (104)
for the extrema) (1.

To show how the form of the tirriadependent Schrédinger equation is

obtained, we introduce the notation:

U= E/m (106)
- let' s call this massless quantity the "total mechanical energiality" of the patrticle;
u(x,y,z) =U(xy,z)/m (107)

-1 e tall this massless quantity the "potenéakrgiality” of the particle.
Taking into accounkEx.s (106) and (10), Eg (105) can be represented in

the form
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3>,
HD Y (X’ Y, Z) + I'T'[e- U(X, Y, Z)]y (X’ Y, Z) =0. (108)

We divide both sides of the E(L08) by k

3> o L m =0
am 2V Y.+ —[e-u(xy. 2y (xy.2) =0, (109)

and take into account that there is a connection between th&/ratmd the main

characteristics of a stationary random process (61)

292
hy=""er =2 (110)

P
t, m

where for the thredimensional case

_1 2 2
spr_g\/spx_'_spy"_spz (111)

is the standard deviation of a chaotically wandering particle from the conditional
center of the stochastic system (Figures 1 and 2);

L =5 tt s 4es) 1)

is the averaged autocorrelation interval of the considered -thneensional
stationary random process (Figure 2).
Taking into account (10), Ex. (109) takes the form
3407 (v 2+ He- uxy.2ly (4y.2 =0

p
Let’ s di vi dthisebpeession by # drelsas @ result of simple

transformations, we obtain

2
Dzy (X’ Y, Z)+h_2[e' U(X’ Y Z)]y (X’ Y; Z) :0’ (113)
pl
3 3255 _ raSu
woo nan e[
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is the scale parameter of the investigated tuliegensional random procef<e.,
chaoticwandersof a particle in the vicinity of the "center”, see Figures &, 3).
The form of the obtaine&x. (113) completely coincides with the form of

thetime-indepementSchrodinger equation

2m
DZJ/(X’ Y, Z)+?[E' U(X’ Y, Z)]y (X’ Y, Z) :0’ (115)
which, taking into account (B) and (1Q), can be represented as
) 2m’
Py (x,y,2)+ = [e- u(xY,2)]y (X Y,2) =0. (116)

Eqgs (113) and (116) hatbe same form
D%y (x,Y, 2) + conste- u(x, y, 2]y (x,y, z) =0.

Therefore,Ex. (113) we will be called thenassless generalized time

independent Schrodinger equation

Meanwhile,stochastic equatio(iLl13) has two tangible advantages over the
Schrddinger equatiofi16):

1] Eqg. (116) is a special case of Eq. (113). When studying the averaged
behavior of a particle of subatomic scale (for example, an electron), the average
characteristics of its chaotic behavity = Uer and (= Wrincluded in Ex. (114)

can besuch that the relation is performed

2
2o 2m, (117

hy >
In this case, Eg (113) and (116) almost completely coincide.
When considering the chaotic behavior of a microparticle (for example, the
nucleus of a biological cell), the averaged parameltgers O 1 & = U can also
be estimated (measured) and substituted into Ex. (114). In this case, the
generalizedime-independent Schrodinger equation (113) will describe a discrete

(quantized) set of possible averaged states of the nucleus of a biological cell.
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Equation (113) is also suitable for describing the average states of chaotic
oscillations or displacemenbf the center of mass: the yolk in an egg, a criminal
in a prison cell, a nucleus in the bowels of the planet, etc.

2] The generalized timandependent Schrodinger equation (113) follows

mathematically correctly and logically from the stochastic EBl@rs son’ s
equation (102). Whereas it is quite obvious that it is impossible to directly obtain
the timeindependent Schroédinger equation (115) from the -tieyendent
Schrédinger equation (104). This is achieved, however, in a very strange way for
ordinary onsciousness by representing the wave fungtiory,z,) in the form of
a complex function

y (x.y,zt) =y (x.y,9 exdiEt />}, (118)
which is justified by the formal concepts of de Broglie's matter waves, which are
not experimentally observed.

Eqg. (113) has an advantage o\ey. (115) in that it is applicable not only
for describing the quantum effects of the microworld, but also for thegee
behavior of macroscopic stochastic objects under similar conditions, and for
which, as a result of statistical processing, their chaotic behavior can to obtain the
characteristicslr andr . Such stochastic objects (regardless of their scale) can
include, for example, an electron in a hydrogen atom, a wandering nucleus of a
biological cell, a quivering yolk in an egg, a fly in a glass jar, the tip of a tree
branch under the influence of gusts of wind, the center of mass of a mobile
embryo in the wmb, an oscillating core in the interior of a star or planet, etc.)

In other wordsEq. (113) is suitable for describing the averaged state of any
stochastic object that constantly chaotically wanders (trembles, vibrates, moves)
in the vicinity of the conitional center, in such a way that its total mechanical
energy (more precisely, energiality) remains unchanged.

This is the novelty of this work, and not only that it was possible to
correctly derive the stochastic equation (113) similar to the-itmaependent
Schrddinger equation (1150his is the novelty of this work, and not only that it
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was possible to correctly derive the stationary stochastic equation (113) exactly
similar to the timandependent Schrdodinger equation (115).

3.5 Stochastic quantum operators
Let us show how operators are obtained in the stochastic quantum mechanics
proposed in this article. To do this, let's return to the model shown in Figures 1
and 2. During the chaotic movement of the particle in the vicinftythe
conditional center, it constantly changes the direction of its movemenirésip
and 2). Therefore, the particle at each moment of time has an angular momentum
® b #h (119)
wherer’is the radius vector from the conditional center to the particle (see Fig. 2);
B & —i nstantaneous value of particle’s
Let '’ s r epr eEg.668)in the ¢component totmo r
L =Yp,- zB,, L, =2Zp- xp, L, =Xp, - ¥p,. (120)

Let's average these components

L =yp,- zp,, Ly=2zp,- xp,, L.=xp,- yp,. (121)
We use the coordinate representation of the avexagemponent of the
momentum (81) (122)

g = }r(px)t@dt@ =-i>uﬁ/(x)wdx: nﬁ((x)% i>“—g/ (Rdx? % i>“—g}y(x)y(;)dx.
a - HX P O

Similarly
E (p,)tgdtg, * g»— my)y(y)dy (123)
tg = nr(pz)t@dt@ g» sry(z)y(z)dz (124)

Let us take into account that, for examplebin (122)

}V(X)y (x)dx= nr”'((x)dle, (125)
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Then identities (122)(123) and(124) turn outto be equivalent to the
operators of the components of the momentum vector
9 > o > 9 >
p=-HB p ="K p="H (126
i X i Hy i pz
Let ' s shHkxb $122)thraughg124) into Ex. (121) and take into
account (125) and (126As a result, we obtain the operators of the angular
momentum componentgJ

2 >3 pe 2
x=—a/—-2—8 Ly=
Tt

-GDOr

a K Ko
Ey

Let’' s divide both si dmr of these expres

Ly -2 &1 ,uo
m|r P m|r"|2i§?'uz w!
(4]

L > o ~
b= amb.xEg (127
mir{> mjr|~i¢c \x pz+
4]

e 2 &1 KO
m|r m|r‘“|2i§(w ™

Taking into account (61), we have massless stochastic quantum operators

hy 4 9 o _h 3 4

g M Ee, Wy__é%ﬁ- X IJ8, Wz——éﬁﬁ‘ y— 8! (128
IIrlc; by = irfe i pz= irPE

where ﬁ/x, lﬁ/y , S/z are the components of teéochastimperator of theangular

velocity of a chaotically wandering particle, since

—

— L r3
w=—¢, = V (129)
m|r IFI

In a spherical coordinate system, masskeshasticoperators (128) have
the form
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) h, & Q

wx = —Egain/ M. ctgg cos ig,
Hree Hg W =

) h, & Q

wy = —¢> 8oy i-ctgqsm/ ig (230
Hree Hg W =

@ h

Wz:.—ézi.-
T W

The stochastic quantum operator of the squared ddrigalar velocityof a
chaoticallywandering patrticle is
@2 @2 @2 @2
W= Wit Wyt Ws = l—élDw : (13
2

where[73] p? =L Moy Ha, 1 W (132)
‘” snnqqu Hg+ sin’qu*

Nowlet s di vi dteeEbs(i28 by thée phricke mash

] 2 14
m imp m impy m  impz
As a result, we obtain stochastic quantum operators of the components of
the velocity vector
@ 2 h 2 h
vy =2, vy=_—p£, vz:_—pﬁ. (134)
I X I Wy [
Many other stochastic quantum operators, analogous to quantum mechanical

IS

operators, can be obtained in a similar way.

3.6 Quantized states of the nucleus of a biological cell

Stochastic quanm physics, proposed in this article, is suitable for describing
quantum effects not only at the level of elementary particles, but also at the micro
and macrdevels of the world around us. As an example, we Ege(113) to
study the average behavior of a chaoticiligtuatingnucleus of a biological cell

(hereinafter gell nucleus or «c-nucleus) (see Figire5b).
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Conditional
center

Fig.5: A simplified model of a eukaryotic biological cell with a pronouncetl nucleus, which
continuously wanders (fluctuates) in the vicinity of the conditional center, so that its total
mechanical energlf always remains constant (Ecens)

Consider a living eukaryotic biological cell in the period between its
division (i.e., in a state of interphase).

Let the state of the interphase of thielogical cell under consideration
continue for the entire period of observation of the chaotically oscillating cell
nucleus (hereinafter tieenucleus). In this case, the total mawltalenergialityof
the c-nucleus remains constant

G = ta(X,y,Z,) + Un(X,y,Z,) = const (136)
where U = En(x,y,z,}/my is the total mechanical energiality of tbeucleus(here
my is the mass of the-kucleus)
ta(X,y,2,) = Tn(X,y,z,}/my, is the kinetic energiality of the-nucleus;
un(X,Y,Z,J = Un(X,y,z,}/m, is the potential energiality of theenucleus.
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The considered random process with the participation ofcthacleus
completely corresponds to the stochastic model described in § 2.1, and condition
(136) coincides with condition (6). Therefore, to describe the average states of a
chaotically oscillatig c-nucleus, the massless generalized {intkependent

Schrédinger equation (113) can be used

2
BY (xy.9+ 716 - u,(xy.2ly (xy,2) =0, (137)
nl
_[32s2 . .
where h, = > t_”f is scale parameter, (138)
S =2y SLTSL TSE (139)

— is the standard deviation of a chaotically oscillatiogucleus from a
conventional center (see Figure 5);

b =Lty 51, a40)
— is the averaged autocorrelation interval of the considered-dmesnsional
stationary random process, in which a chaotically oscillatoigucleus
participates.

Let us consider the case when the elastic tensions of the cytoflasm
surrounding the-nucleus, increase on average in proportion to the distance of the
c-nucleus from the conventional center

av(X) & urk (141)
where ky= Ku/m, is the massless coefficient of elastic tension of the cytoplasm;

Kuis theforce constantf the cytoplasm
r= \/mis distance from the conventional center to¢hreucleus.
In this case, the averaged potential energiality of dimeicleus can be
approximately represented in the form
u@ . QiQi -Qi 8 (142)
Substituting Ex. (142) into Eq. (137), we obtain the equation of an isotropic

threedimensional harmonic oscillator known in quantum mechanics [74]
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r2
DY M)+ 56 (143)
nrl
1 pa,ue, By
where Dz:?ﬁ%zﬁr& rqu (144)
(o =

is the Laplace operator in spherical coordinates, while the opapgtois given
by Ex.(132);

The solutions tdq. (143) are wave functions [74]

. . /2{0 22 ;_:‘/“o £k’ f
Y um(19./) = R(N)¥in(q./ ) = PN, 0 @A+, expu{ o ;

L(|+1/2)§ ’ (Q/)

. are ageneralized Laguerre polynomials

(145)

where L 2)2 f

o2 +1(- Mg

IOOOI

Yn(@/)=(-D"

R.(cosg) are aspherical harmonic functian

& 4p(+m)
d|+m . )
P._(cosg) = III( - xz)m’zd — +(x2 - 1)' areassociated Legendre functions;
X
X=C09y;

| is theazimuthalguanturmnumber
m is the peripheral quantum number
In atomic quantum physics, the number m is called the "magnetic quantum
number”, but this name is not suitable for stochastic quantum physics. Therefore,
in this article, the number rhquaneim pr op o s ec
number 0.
As you know, there is also a fourth spin quantum number s, which in the

case under consideration, seemingly, is associated with one of the two possible


https://en.wikipedia.org/wiki/Spherical_harmonics
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directions of rotation of the cytoplasm inside a biological cell. However, this
process is not covered in this article.

The wave functions (145) correspond to the eigenvalues of the total
mechanicaknergialityof thefanucleus [74]

€ :hnm/kur%k + +g§:hml,/ku,§aé\l +g§ where N = 2k + 1. (146)

The squares of the modulus of wawections (145),,.(r.q,/ ) F (i.e., the

PDF of the possible location of tleenucleus inside the biological cell) at= 0

and different values of the quantum numbeitsandm are shown in Figure 6.

k=2,1=0,m=0 k=4,l=1,m=1 k=4,1=0,m=0

k=4,1=1,m=0 k=51=2,m=0 k=6,=2,m=1

Fig. 6: The probability density function (PDFy |, (r,q./ ) [ possible locations of the-nucleus

at (i = 0 and different values of the quantum numbensandm. The lighter the spot, the more
likely a c-nucleus will appear in this area. Calculations were performed &sin(l45) [74] and
presented on the web pagepherical_Harmonic_Orbitals.png

The Figure 6 shows that each set of three quantum nunkdrsand m
corresponds to a unique spatial configuration of the average state of the chaotic
wandering (oscillating or trembling) of tleenucleus. This state is determined by
the PDF of the place of possible appearance ottmgcleus (more precisely, its
center of mass), inside the biological cell.


https://upload.wikimedia.org/wikipedia/commons/b/b3/2D_Spherical_Harmonic_Orbitals.png
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As is known, there is also a fourth spin quantum number s, which in the case
under consideation, seemingly, is associated with one of two possible directions
of rotation of the cytoplasm inside the biological cell. However, this process is not
covered in this article.

To experimentally fix one of the spatial configurations of the averaged
behavor of thec-nucleus, it is necessary:

- to ensure the absence of a tangible influence of external and internal force
factors on the biological cell for the entire period of observation of-thecleus.

- make a video recording of the chaotic behaviothefc-nucleus for a long
period of time;

- take into account that the biological cell as a whole can participate in
complex Brownian and/or thermal motion; these movements must be eliminated
physically or excluded by software;

- take into account that thenucleus can change its shape, and its internal
content (karyoplasm, chromatin etc.) can change over time; this leads to blurring
of the boundaries of the spatial configuration of the averaged state of trembling of
the given organelle. Therefore, it iscegsary to monitor not the behavior of the
entire cell nucleus, but the chaotic movement of only its center of mass. In other
words, it is needful to programmatically identify the center of mass of the cell
nucleus (i.e., the-nucleus) and monitor onlystchaotic motion.

- digitized, softwarecleaned and mathematically processed video recording
of the chaotic behavior of thenucleus (i.e., thets center of mass) need to
reproduce at high speed, with the display of this highly accelerated process on th
computer monitor. The speed of reproduction of the motion ofcthecleus
should be so fast that this point is "smeared" over the entire observation area.

- if all the above actions can be performed with a sufficiently high
resolution of the videequipment, as cleanly as possible and with the exclusion of
various interfering factors, then in accordance with the hypothesis set out in this

article, the configuration of dark and light spots should be revealed on the monitor
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screen (similar to one dfi¢ spot configurations shown in Figure 7). In this case, a
dark spot on the monitor screen should mean that-thecleus appeared in this

place more often than in the place where the light spot was formed.

- ll-ll -n- o . w i —
'I‘ -
L U
o - :_:__
= ... -.- I_Et .r "‘I'H"
L a. K ™ -
::' "'...: - .._:' W,
_I'- -.ll'l -~ . ) a
T ] e r
. B 4 K L - e

Fig. 7: Examples of possible configurations of ddight spots that can be revealed as a result of
averaging the chaotic movement (tremor) of theucleus inside a biological cell. These spot
configurations can correspond to eigenwave functigns(r,q,/ ) (145 with different sets of

three quantum numbeksl, andm

It is possible that the configuration of these dagkt spots will to

correspond to one of the eigenwave functigns(r,q,/ ) (more precisely, PDF
IV m(r,@./ ) P) of the isotropic threelimensional quantum harmonic oscillator

(see lightdark spots shown iRigure 6).
Using sound vibrations with a resonant frequency (i.e., with a frequency
close to the natural frequency of vibrations of tlemsidered isotropic three
dimensional quantum harmonic oscillator)
o |3 1
fOx A A !
22p

we canto influence the cell nucleus, thereby changing the average state of the

(147)

chaotic wandering of its center of mass (cewucleus). After that, all the above
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steps should be repeated to identify a different configuration ofldgatkspots,
correspondingd a more excited state of thewucleus.

It is possible that these oscillations must be excited simultaneously from
two opposite ends of each of the three mutually perpendicular directions. This will
make it possible to exclude the possibility of tranelai displacement of the
nucleus due to unilateral action.

If the principles ofthe stochastic quantum physics of biological cell
organelles, described above, are correct, then the quantum transition @f the
nucleus from one average state to its othates(i.e., a junyiike change in the
configuration of darkight spots on the monitor screen) should occur when
transferring to a giverc-nucleus additionaportion of thetotal mechanical
energiality

AU = Ch— Ghis (148)
whereU is the total mechanical energiality of th@ucleus in the state

Ui is the total mechanical energiality of thawucleus in the statie + |
(herej = 1,2,3, ...).

In this respectthe stochasticq uant um b i odnh)smulcmt ( 10
differ from the quantum phy&m)cShe of el en
difference lies only in the scales of the processes under consideration, which
differ from each other by about Ifders of magnitude. Meanwhile, there is no
doubt in the modern scientific community that quantum mechanics is applicable
to describe processes on internmékmi ate sca
[75,79. For example, quantiimechanical methodsedcribe oscillations of the

atomic lattice (phonons), molecular vibrations, etc.

4 DISCUSSION

The article considers a stationary random (stochastic) process associated with the
chaotic motion of a particle in the vicinity of the conditionagfected center of a

given stochastic system (Figurenfi5). Based on a detailed consideration of this
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process, we obtained stochasticElde0 i Sson’ s equatido (102)
the averaged functional of the action of a randomly wandering gaf@z2).

In the stationary case, when the wave function, its total mechanical energy
and potential energy do not depend on time [i.e. whéhy,zt) = y(rY,2,
E(t) = EandU(x,y,zt)=U(x,Y,2)], thestochastic EulePoisson equation (102)
is reduced to the stationary stochadfig. (113) exactly similar to the tire
independent Schrodinger equation (115).

Eq. (113) equally well describes the discrete sets of the averaged behavior
of an electron behawvioin a potential well, a nucleus in the cytoplasm of a
biological cell, the center of the embryonic mass in the womb, a nucleus in the
bowels of the planet, a fly in a bank, etc. All these stable stochastic processes have
the possibility of transition fronone stationary standing in another stationary
standing with the absorption or release of a specific portion of the total
mechanical energiality.

In this way, together with the derivation of thessless generalized time

independent Schrédinger equatidi3), we come to the realization that quantum

transitions are inherent not only to objects of atoamd subatomiscale, but also
manifest themselves at all levels of the organization of being.

This is easy to verify, for example, by referring to a flpstantly flying in
a large glass jar. With the help of a video camera, you can record its chaotic
movements for a long time. If you then scroll through the video at a very high
speed, you will not see a fly on the screen, but a stable blurry spot tbats dfie
probability density of the location of the fly. It should be expected that if the fly is
not disturbed by anything, then the blurry spot will resemble a Gaussian
probability distribution density with the greatest black in the center of the glass
jar. However, if the fly is somehow influenced by an energy transfer, for example,
by heat or by ultrasound with a certain frequency, then the average behavior of the

fly can be changed dramatically (in discrete steps). In this case, a blurry spot can
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changp the configuration to an averaged ring or an averaged eight, etc. (Of course,
no fly should be made to suffer from such experiments.) The embryo in the
womb, the core in the bowels of the planet, and many other similar objects will
behave in the same wdgr long periods of time. It is precisely these different
probabilistic configurations with different energy levels that are described by the

massless generalized tirmelependent Schrédinger equatidd 3) derived in this

article.

The center of thembryonic mass in the womb, and the core in the bowels
of the planet, and many other similar objects whose behavior is studied over fairly
long periods of time, will behave in the same way.

The approach proposed in this paper makes it possible to deeeasic
equations of nonrelativistic stochastic quantum physics (102) and (113) based on
principles that are fundamentally different from the ideological foundations of the
Copenhagen andManyWorlds interpretations of quantum mechanics. (For
example, inhis article, the wandering particle under study has a chaotic trajectory
and specific dimensions.) However, the mathematical apparatus of quantum
mechanics, created by great scientists, remained virtually unchanged, but its
logical foundations becomes tleby much clearer.

In a similar way, all the basic equations of quantum field theory can be
obtained: the Clesordon equation, Dirac equations, Maxwell equations, etc.
Their derivation algorithm is similar to the approach given in this article:

1) expresshe deterministic action of the particle;

2) find the mean of this action,

3) all the averaged terms in the integrand of the averaged action are
represented through the probability density functidfy and/orj (px);

4) switch all terms of the Lagrangian thfe averaged action to a coordinate

representation or a momentum representation;

5) determine the equation for the extrénod the resulting functional

(averaged action) through methods of the calculus of variations.
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5 CONCLUSIONS
The meaning of the derivation of stochag&s (102) and (113) presented here is
as follows:
U It becomes clear to which phenomena of the miared macrocosm these
equations relate, what are the boundaries and conditions of their application.
iU Thereisnmeed to apply either the Heisenberg
de Broglie concept of “ mat threugh(4Baves"’, S |
is used to derive the stochaskqs (102) and (113), and this procedure is
completely analogous to the tramsit from the coordinate submission to
impulse, and vice versa. However, this procedure is obtained only on the
basis of an analysis of the properties of a stationary random process, without
involving the above hypotheses. When solving this problem, armatBate
result was obtained: a procedure for obtaining the probability density function
of the derivative of the nth order for amfold differentiable stationary
random process was determined. This result can be used in various branches
of statistical plysics.
U Theratiok/ fm“reduced Planck's constant” divi
through the variance and correlation time of the investigated stationary
stochastic process (114). Consequently, the generalized stochastic equations
(102) and (113) do natontain the particle "masdn, and therefore it is
necessary to introduce an additional dimensional constahe reduced
Pl anck's constant. “Mass’” is (according
dimensional quantities in modern physics (see ChapterGautiman 2008
[21]). There is no doubt that the concept of "mass” should be absent in the
final theory, and this article is one of the steps to eradicate this concept from

scientific concepts of nature.
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U The volume and trajectory of the wandering pagtidre returned to
consideration. Together with them, the physics of the microworld again finds
its usual logical "ground underfoot."

0 We hope that if this work is carefully analyzed and accepted by the scientific
community, this will not only allow us to aulate the probabilistic results of
complex chaotic processes in both the microcosm and the macrocosm, but
also to analyze the inner essence of these processasiggested by Albert

Einstein That i s, Thinmkv amed caal ¢ul at e” .
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